[1] Jia J, Wang F, Wei C, Zhou A, Jia X, Li F, Tang M, Chu L, Zhou Y, Zhou C, Cui Y, Wang Q, Wang W, Yin P, Hu N, Zuo X, Song H, Qin W, Wu L, Li D, Jia L, Song J, Han Y, Xing Y, Yang P, Li Y, Qiao Y, Tang Y, Lv J, Dong X. The prevalence of dementia in urban and rural areas of China[J]. Alzheimers Dement, 2014, 10:1-9.
[2] Alzheimer's Association. 2016 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2016, 12:459-509.
[3] Zeng XY, Qi JL, Yin P, Wang LJ, Liu YN, Liu JM, Zhou MG, Liang XF. Disease burden report of China and provincial administrative regions from 1990 to 2016[J]. Zhongguo Xun Huan Za Zhi, 2018, 33:1147-1158.[曾新颖, 齐金蕾, 殷鹏, 王黎君, 刘韫宁, 刘江美, 周脉耕, 梁晓峰. 1990~2016年中国及省级行政区疾病负担报告[J]. 中国循环杂志, 2018, 33:1147-1158.]
[4] Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R;Contributors. NIA-AA research framework:toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14:535-562.
[5] Fernandez MA, Klutkowski JA, Freret T, Wolfe MS. Alzheimer prsnilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (A β) by γ-secretase to increase 42-to-40-residue Aβ[J]. J Biol Chem, 2014, 289:31043-31052.
[6] Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8:595-608.
[7] Mohamed T, Shakeri A, Rao PP. Amyloid cascade in Alzheimer's disease:recent advances in medicinal chemistry[J]. Eur J Med Chem, 2016, 113:258-272.
[8] Knight EM, Kim SH, Kottwitz JC, Hatami A, Albay R, Suzuki A, Lublin A, Alberini CM, Klein WL, Szabo P, Relkin NR, Ehrlich M, Glabe CG, Gandy S, Steele JW. Effective anti -Alzheimer A β therapy involves depletion of specific A β oligomer subtypes[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3:E237.
[9] Wu J, Li L. Autoantibodies in Alzheimer's disease:potential biomarkers, pathogenic roles, and therapeutic implications[J]. J Biomed Res, 2016, 30:361-372.
[10] Du Y, Dodel R, Hampel H, Buerger K, Lin S, Eastwood B, Bales K, Gao F, Moeller HJ, Oertel W, Farlow M, Paul S.Reduced levels of amyloid beta-peptide antibody in Alzheimer disease[J]. Neurology, 2001, 57:801-805.
[11] Weksler ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals[J]. Exp Gerontol, 2002, 37:943-948.
[12] Song MS, Mook-Jung I, Lee HJ, Min JY, Park MH. Serum anti-amyloid-beta antibodies and Alzheimer's disease in elderly Korean patients[J]. J Int Med Res, 2007, 35:301-306.
[13] Brettschneider S, Morgenthaler NG, Teipel SJ, Fischer-Schulz C, Bürger K, Dodel R, Du Y, Möller HJ, Bergmann A, Hampel H. Decreased serum amyloid beta (1-42) autoantibody levels in Alzheimer's disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta (1-42) peptide[J]. Biol Psychiatry, 2005, 57:813-816.
[14] Moir RD, Tseitlin KA, Soscia S, Hyman BT, Irizarry MC, Tanzi RE. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer's disease patients[J]. J Biol Chem, 2005, 280:17458-17463.
[15] Hyman BT, Smith C, Buldyrev I, Whelan C, Brown H, Tang MX, Mayeux R. Autoantibodies to amyloid-beta and Alzheimer's disease[J]. Ann Neurol, 2001, 49:808-810.
[16] Baril L, Nicolas L, Croisile B, Crozier P, Hessler C, Sassolas A, McCormick JB, Trannoy E. Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer's disease and control subjects[J]. Neurosci Lett, 2004, 355:226-230.
[17] Klaver AC, Coffey MP, Smith LM, Bennett DA, Finke JM, Dang L, Loeffler DA. ELISA measurement of specific non-antigen -bound antibodies to Aβ1-42 monomer and soluble oligomers in sera from Alzheimer's disease, mild cognitively impaired, and noncognitively impaired subjects[J]. J Neuroinflammation, 2011, 8:93.
[18] Gustaw KA, Garrett MR, Lee HG, Castellani RJ, Zagorski MG, Prakasam A, Siedlak SL, Zhu X, Perry G, Petersen RB, Friedland RP, Smith MA. Antigen-antibody dissociation in Alzheimer disease:a novel approach to diagnosis[J]. J Neurochem, 2008, 106:1350-1356.
[19] Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA. Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia:autoantibodies to Abeta (25-35) oligomers, S100b and neurotransmitters[J]. J Neuroimmunol, 2007, 186:181-192.
[20] Wang YJ, Liu YH, Zeng F, Liu CH, Wang L, Deng J, Zhou HD. The role of anti-Aβ autoantibodies in Alzheimer's disease[C]. Abstract Proceedings the 17th National Neurology Conference of Chinese Medical Association, Xiamen:Chinese Medical Association, 2014:487.[王延江, 刘雨辉, 曾凡, 刘成惠, 王琳, 邓娟, 周华东. 抗Aβ自身抗体在阿尔茨海默病中的作用[C]. 中华医学会第十七次全国神经病学学术会议论文集, 厦门:中华医学会, 2014:487.]
[21] Gustaw-Rothenberg KA, Siedlak SL, Bonda DJ, Lerner A, Tabaton M, Perry G, Smith MA. Dissociated amyloid-beta antibody levels as a serum biomarker for the progression of Alzheimer's disease:a population-based study[J]. Exp Gerontol, 2010, 45:47-52.
[22] Maftei M, Thurm F, Schnack C, Tumani H, Otto M, Elbert T, Kolassa IT, Przybylski M, Manea M, von Arnim CA. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer's disease patients[J]. PLoS One, 2013, 8:E68996.
[23] Qu BX, Gong Y, Moore C, Fu M, German DC, Chang LY, Rosenberg R, Diaz-Arrastia R. Beta-amyloid auto-antibodies are reduced in Alzheimer's disease[J]. J Neuroimmunol, 2014, 274:168-173.
[24] Sha SJ, Deutsch GK, Tian L, Richardson K, Coburn M, Gaudioso JL, Marcal T, Solomon E, Boumis A, Bet A, Mennes M, van Oort E, Beckmann CF, Braithwaite SP, Jackson S, Nikolich K, Stephens D, Kerchner GA, Wyss-Coray T. Safety, tolerability, and feasibility of young plasma infusion in the plasma for alzheimer symptom amelioration study:arandomized clinical trial[J]. JAMA Neurol, 2019, 76:35-40.
[25] Wang T, Xie XX, Ji M, Wang SW, Zha J, Zhou WW, Yu XL, Wei C, Ma S, Xi ZY, Pang GL, Liu RT. Naturally occurring autoantibodies against A β oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer's disease than intravenous immunoglobulin[J]. Neuropharmacology, 2016, 105:561-576.
[26] Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccineprogress:the critical need for new development strategies[J]. J Neurochem, 2016, 137:687-700.
[27] Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease[J].Nat Med, 2000, 6:916-919.
[28] DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2001, 98:8850-8855.
[29] Lemere CA. Immunotherapy for Alzheimer's disease:hoops and hurdles[J]. Mol Neurodegener, 2013, 8:36.
[30] Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu -Seifert H, Mohs R, Alzheimer's Disease Cooperative Study Steering Committee; Solanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease[J]. N Engl J Med, 2014, 370:311-321.
[31] Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR; Bapi-neuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to -moderate Alzheimer's disease[J]. N Engl J Med, 2014, 370:322-333.
[32] Kohyama K, Matsumoto Y. Alzheimer's disease and immunotherapy:what is wrong with clinical trials[J]?Immunotargets Ther, 2015, 4:27-34.
[33] Wang YJ. Alzheimer disease:lessons from immunotherapy for Alzheimer disease[J]. Nat Rev Neurol, 2014, 10:188-189.
[34] Szabo P, Mujalli DM, Rotondi ML, Sharma R, Weber A, Schwarz HP, Weksler ME, Relkin N. Measurement of anti-beta amyloid antibodies in human blood[J]. J Neuroimmunol, 2010, 227:167-174.
[35] Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer's disease:what are the most promising targets[J]? Immun Ageing, 2013, 10:18.
[36] Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes:from structure to effector functions[J]. Front Immunol, 2014, 5:520.
[37] Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan[J]. Ann NY Acad Sci, 2012, 1253:170-180.
[38] Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer LC, Röskam S, Stüer C, Al-Abed Y, Noelker C, Balzer-Geldsetzer M, Oertel W, Du Y, Bacher M. Naturally occurring autoantibodies against beta-amyloid:investigating their role in transgenic animal and in vitro models of Alzheimer's disease[J].J Neurosci, 2011, 31:5847-5854.
[39] Mengel D, Röskam S, Neff F, Balakrishnan K, Deuster O, Gold M, Oertel WH, Bacher M, Bach JP, Dodel R. Naturally occurring autoantibodies interfere with β-amyloid metabolism and improve cognition in a transgenic mouse model of Alzheimer's disease 24 h after single treatment[J]. Transl Psychiatry, 2013, 3:E236.
[40] Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H.Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease[J]. J Neuroinflammation, 2012, 9:105.
[41] Relkin NR, Thomas RG, Rissman RA, Brewer JB, Rafii MS, van Dyck CH, Jack CR, Sano M, Knopman DS, Raman R, Szabo P, Gelmont DM, Fritsch S, Aisen PS; Alzheimer's Disease Cooperative Study. A phase 3 trial of Ⅳ immunoglobulin for Alzheimer disease[J]. Neurology, 2017, 88:1768-1775.
[42] Kile S, Au W, Parise C, Rose K, Donnel T, Hankins A, Chan M, Ghassemi A. IVIG treatment of mild cognitive impairment due to Alzheimer's disease:a randomized double-blinded exploratory study of the effect on brain atrophy, cognition and conversion to dementia[J]. J Neurol Neurosurg Psychiatry, 2017, 88:106-112.
[43] Dodel R, Rominger A, Bartenstein P, Barkhof F, Blennow K, Förster S, Winter Y, Bach JP, Popp J, Alferink J, Wiltfang J, Buerger K, Otto M, Antuono P, Jacoby M, Richter R, Stevens J,Melamed I, Goldstein J, Haag S, Wietek S, Farlow M, Jessen F. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer's disease:a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial[J]. Lancet Neurol, 2013, 12:233-243.
[44] Arai H, Ichimiya Y, Shibata N, Nakajima T, Sudoh S, Tokuda T, Sujaku T, Yokokawa S, Hoshii N, Noguchi H, Bille A. Safety and tolerability of immune globulin intravenous (human), 10% solution in Japanese subjects with mild to moderate Alzheimer's disease[J]. Psychogeriatrics, 2014, 14:165-174.
[45] Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M.Glycosylation profiles of epitope-specific anti-beta-amyloid antibodies revealed by liquid chromatography-mass spectrometry[J]. Glycobiology, 2009, 19:958-970.
[46] Kwon H, Crisostomo AC, Smalls HM, Finke JM. Anti-A β oligomer IgG and surface sialic acid in intravenous immunoglobulin:measurement and correlation with clinical outcomes in Alzheimer's disease treatment[J]. PLoS One, 2015, 10:E0120420.
[47] Lundström SL, Yang H, Lyutvinskiy Y, Rutishauser D, Herukka SK, Soininen H, Zubarev RA. Blood plasma IgG Fc glycans are significantly altered in Alzheimer's disease and progressive mild cognitive impairment[J]. J Alzheimers Dis, 2014, 38:567-579.
[48] Finke JM, Ayres KR, Brisbin RP, Hill HA, Wing EE, Banks WA. Antibody blood-brain barrier efflux is modulated by glycan modification[J]. Biochim Biophys Acta Gen Subj, 2017, 1861:2228-2239.
[49] Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX.Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions[J]. J Am Chem Soc, 2012, 134:12308-12318.
[50] Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N.Engineered therapeutic antibodies with improved effector functions[J]. Cancer Sci, 2009, 100:1566-1572.
[51] Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering[J]. Proc Natl Acad Sci USA, 2017, 114:3485-3490.
[52] Dekkers G, Treffers L, Plomp R, Bentlage AE, de Boer M, Koeleman CA, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJ, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G.Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor-and complement-mediated -effector activities[J]. Front Immunol, 2017, 8:877.
[53] Peschke B, Keller CW, Weber P, Quast I, Lünemann JD. Fc -galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity[J]. Front Immunol, 2017, 8:646.
[54] Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation[J].Science, 2006, 313:670-673.
[55] Ahmed AA, Giddens J, Pincetic A, Lomino JV, Ravetch JV, Wang LX, Bjorkman PJ. Structural characterization of anti -inflammatory immunoglobulin G Fc proteins[J]. J Mol Biol, 2014, 426:3166-3179.
[56] Anthony RM, Kobayashi T, Wermeling F, Ravetch JV.Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway[J]. Nature, 2011, 475:110-113.
[57] Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation[J]. J Clin Invest, 2019, 129:3492-3498. |