[1] Phipps MS, Cronin CA. Management of acute ischemic stroke[J]. BMJ, 2020, 368:l6983. [2] Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine effects of mesenchymal stem cells in ischemic stroke:opportunities and challenges[J]. Mol Neurobiol, 2022, 59:6281-6306. [3] Powers WJ. Acute ischemic stroke[J]. N Engl J Med, 2020, 383:252-260. [4] Guo Y, Peng Y, Zeng H, Chen G. Progress in mesenchymal stem cell therapy for ischemic stroke[J]. Stem Cells Int, 2021:ID9923566. [5] Pincela Lins PM, Pirlet E, Szymonik M, Bronckaers A, Nelissen I. Manufacture of extracellular vesicles derived from mesenchymal stromal cells[J]. Trends Biotechnol, 2023.[Epub ahead of print] [6] Turnbull MT, Zubair AC, Meschia JF, Freeman WD. Mesenchymal stem cells for hemorrhagic stroke:status of preclinical and clinical research[J]. NPJ Regen Med, 2019, 4:10. [7] Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7:272. [8] Scheiber AL, Clark CA, Kaito T, Iwamoto M, Horwitz EM, Kawasawa YI, Otsuru S. Culture condition of bone marrow stromal cells affects quantity and quality of the extracellular vesicles[J]. Int J Mol Sci, 2022, 23:1017. [9] Shen H, Gu X, Wei ZZ, Wu A, Liu X, Wei L. Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice[J]. Exp Neurol, 2021, 337:113542. [10] Guo Z, Sun C, Yang H, Gao H, Liang N, Wang J, Hu S, Ren N, Pang J, Wang J, Meng N, Han L, Liu H. Regulation of neural differentiation of ADMSCs using graphene-mediated wireless-localized electrical signals driven by electromagnetic induction[J]. Adv Sci (Weinh), 2022, 9:e2104424. [11] Basham HK, Aghoghovwia BE, Papaioannou P, Seo S, Oorschot DE. Delayed double treatment with adult-sourced adipose-derived mesenchymal stem cells increases striatal medium-spiny neuronal number, decreases striatal microglial number, and has no subventricular proliferative effect, after acute neonatal hypoxia-ischemia in male rats[J]. Int J Mol Sci, 2021, 22:7862. [12] Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S, Yoshimura S, Iwama T. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy[J]. Cytotherapy, 2011, 13:675-685. [13] Diekhorst L, Gómez-de Frutos MC, Laso-García F, Otero-Ortega L, Fuentes B, Jolkkonen J, Detante O, Moisan A, Leyva L, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M; RESSTORE Consortium. Mesenchymal stem cells from adipose tissue do not improve functional recovery after ischemic stroke in hypertensive rats[J]. Stroke, 2020, 51:342-346. [14] Lin Y, Dong S, Ye X, Liu J, Li J, Zhang Y, Tu M, Wang S, Ying Y, Chen R, Wang F, Ni F, Chen J, Du B, Zhang D. Synergistic regenerative therapy of thin endometrium by human placenta-derived mesenchymal stem cells encapsulated within hyaluronic acid hydrogels[J]. Stem Cell Res Ther, 2022, 13:66. [15] Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation[J]. Cell Transplant, 2021, 30:9636897211024183. [16] Li W, Shi L, Hu B, Hong Y, Zhang H, Li X, Zhang Y. Mesenchymal stem cell-based therapy for stroke:current understanding and challenges[J]. Front Cell Neurosci, 2021, 15:628940. [17] Anthony S, Cabantan D, Monsour M, Borlongan CV. Neuroinflammation, stem cells, and stroke[J]. Stroke, 2022, 53:1460-1472. [18] Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory disequilibrium in stroke[J]. Circ Res, 2016, 119:142-158. [19] Liu X, Zhang M, Liu H, Zhu R, He H, Zhou Y, Zhang Y, Li C, Liang D, Zeng Q, Huang G. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes[J]. Exp Neurol, 2021, 341:113700. [20] Oh SH, Choi C, Noh JE, Lee N, Jeong YW, Jeon I, Shin JM, Kim JH, Kim HJ, Lee JM, Kim HS, Kim OJ, Song J. Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model[J]. Exp Mol Med, 2018, 50:1-12. [21] Nazarinia D, Sharifi M, Dolatshahi M, Nasseri Maleki S, Madani Neishaboori A, Aboutaleb N. FoxO1 and Wnt/β-catenin signaling pathway:molecular targets of human amniotic mesenchymal stem cells-derived conditioned medium (hAMSC-CM) in protection against cerebral ischemia/reperfusion injury[J]. J Chem Neuroanat, 2021, 112:101918. [22] Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J]. J Neuroinflammation, 2019, 16:178. [23] Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model[J]. Biomed Pharmacother, 2021, 140:111709. [24] Liu D, Ye Y, Xu L, Yuan W, Zhang Q. Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways[J]. Biomed Pharmacother, 2018, 108:663-669. [25] Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells[J]. Cell Transplant, 2017, 26:243-257. [26] Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Retraction note:bone mesenchymal stem cell-derivedexosomal microRNA-29b-3p preventshypoxic-ischemic injury in rat brain byactivating the PTEN-mediated Akt signaling pathway[J]. J Neuroinflammation, 2020, 17:352. [27] Gregorius J, Wang C, Stambouli O, Hussner T, Qi Y, Tertel T, Börger V, Mohamud Yusuf A, Hagemann N, Yin D, Dittrich R, Mouloud Y, Mairinger FD, Magraoui FE, Popa-Wagner A, Kleinschnitz C, Doeppner TR, Gunzer M, Meyer HE, Giebel B, Hermann DM. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice[J]. Basic Res Cardiol, 2021, 116:40. [28] Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits of angiogenetic gene:modified human mesenchymal stem cells after cerebral ischemia[J]. Exp Neurol, 2009, 216:47-55. [29] Ghori A, Prinz V, Nieminen-Kehlä M, Bayerl SH, Kremenetskaia I, Riecke J, Krechel H, Broggini T, Scherschinski L, Licht T, Keshet E, Vajkoczy P. Vascular endothelial growth factor augments the tolerance towards cerebral stroke by enhancing neurovascular repair mechanism[J]. Transl Stroke Res, 2022, 13:774-791. [30] Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke[J]. Acta Pharm Sin B, 2021, 11:1767-1788. [31] Xia Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, Zhao B, Wang Y, Deng Z. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke[J]. Stem Cell Res Ther, 2020, 11:313. [32] Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury[J]. CNS Neurosci Ther, 2020, 26:603-615. [33] Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke[J]. Neurology, 2014, 82:1277-1286. [34] Chiu TL, Baskaran R, Tsai ST, Huang CY, Chuang MH, Syu WS, Harn HJ, Lin YC, Chen CH, Huang PC, Wang YF, Chuang CH, Lin PC, Lin SZ. Intracerebral transplantation of autologous adipose-derived stem cells for chronic ischemic stroke:a phase Ⅰ study[J]. J Tissue Eng Regen Med, 2022, 16:3-13. [35] Chung JW, Chang WH, Bang OY, Moon GJ, Kim SJ, Kim SK, Lee JS, Sohn SI, Kim YH; STARTING-2 Collaborators. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke[J]. Neurology, 2021, 96:e1012-1023. [36] Zhang HL, Xie XF, Xiong YQ, Liu SM, Hu GZ, Cao WF, Wu XM. Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats[J]. Brain Res, 2018, 1680:143-154. [37] Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSAR, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous human umbilical cord-derived mesenchymal stromal cell administration in models of moderate and severe intracerebral hemorrhage[J]. Stem Cells Dev, 2020, 29:586-598. [38] Ferrini E, Stellari FF, Franceschi V, Macchi F, Russo L, Murgia A, Grisendi G, Villetti G, Dominici M, Donofrio G. Persistency of mesenchymal stromal/stem cells in lungs[J]. Front Cell Dev Biol, 2021, 9:709225. [39] Datta A, Sarmah D, Kaur H, Chaudhary A, Mounica KL, Kalia K, Borah A, Yavagal DR, Bhattacharya P. Post-stroke impairment of the blood-brain barrier and perifocal vasogenic edema is alleviated by endovascular mesenchymal stem cell administration:modulation of the PKCδ/MMP9/AQP4-mediated pathway[J]. Mol Neurobiol, 2022, 59:2758-2775. [40] Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid Moosavi SM, Keshavarz S, Khodabandeh Z, Zare S, Nazari S, Heidari M, Izadi S, Poursadeghfard M, Borhani-Haghighi A. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke[J]. CNS Neurosci Ther, 2020, 26:670-681. [41] Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk HD, Geissler S, Reinke P. Intravascular mesenchymal stromal/stem cell therapy product diversification:time for new clinical guidelines[J]. Trends Mol Med, 2019, 25:149-163. [42] Wu MR, Lee CH, Hsiao JK. Bidirectional enhancement of cell proliferation between iron oxide nanoparticle-labeled mesenchymal stem cells and choroid plexus in a cell-based therapy model of ischemic stroke[J]. Int J Nanomedicine, 2020, 15:9181-9195. [43] Ran Y, Dong Y, Li Y, Xie J, Zeng S, Liang C, Dai W, Tang W, Wu Y, Yu S. Mesenchymal stem cell aggregation mediated by integrin α4/VCAM-1 after intrathecal transplantation in MCAO rats[J]. Stem Cell Res Ther, 2022, 13:507. [44] Deng L, Peng Q, Wang H, Pan J, Zhou Y, Pan K, Li J, Wu Y, Wang Y. Intrathecal injection of allogenic bone marrow-derived mesenchymal stromal cells in treatment of patients with severe ischemic stroke:study protocol for a randomized controlled observer-blinded trial[J]. Transl Stroke Res, 2019, 10:170-177. [45] Kodali M, Castro OW, Kim DK, Thomas A, Shuai B, Attaluri S, Upadhya R, Gitai D, Madhu LN, Prockop DJ, Shetty AK. Intranasally administered human MSC-derived extracellular vesicles pervasively incorporate into neurons and microglia in both intact and status epilepticus injured forebrain[J]. Int J Mol Sci, 2019, 21:181. [46] Rohden F, Teixeira LV, Bernardi LP, Ferreira PCL, Colombo M, Teixeira GR, de Oliveira FDS, Cirne Lima EO, Guma FCR, Souza DO. Functional recovery caused by human adipose tissue mesenchymal stem cell-derived extracellular vesicles administered 24 h after stroke in rats[J]. Int J Mol Sci, 2021, 22:12860. [47] Hu Y, Chen W, Wu L, Jiang L, Qin H, Tang N. Hypoxic preconditioning improves the survival and neural effects of transplanted mesenchymal stem cells via CXCL12/CXCR4 signalling in a rat model of cerebral infarction[J]. Cell Biochem Funct, 2019, 37:504-515. [48] Chen J, Yang Y, Shen L, Ding W, Chen X, Wu E, Cai K, Wang G. Hypoxic preconditioning augments the therapeutic efficacy of bone marrow stromal cells in a rat ischemic stroke model[J]. Cell Mol Neurobiol, 2017, 37:1115-1129. [49] Zhao Z, Watt C, Karystinou A, Roelofs AJ, McCaig CD, Gibson IR, De Bari C. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field[J]. Eur Cell Mater, 2011, 22:344-358. [50] Morimoto J, Yasuhara T, Kameda M, Umakoshi M, Kin I, Kuwahara K, Kin K, Okazaki M, Takeuchi H, Sasaki T, Toyoshima A, Tajiri N, Agari T, Borlongan CV, Date I. Electrical stimulation enhances migratory ability of transplanted bone marrow stromal cells in a rodent ischemic stroke model[J]. Cell Physiol Biochem, 2018, 46:57-68. [51] Srirussamee K, Xue R, Mobini S, Cassidy NJ, Cartmell SH. Changes in the extracellular microenvironment and osteogenic responses of mesenchymal stem/stromal cells induced by in vitro direct electrical stimulation[J]. J Tissue Eng, 2021, 12:2041731420974147. [52] Kim YR, Ahn SM, Pak ME, Lee HJ, Jung DH, Shin YI, Shin HK, Choi BT. Potential benefits of mesenchymal stem cells and electroacupuncture on the trophic factors associated with neurogenesis in mice with ischemic stroke[J]. Sci Rep, 2018, 8:2044. [53] Ahn SM, Kim YR, Shin YI, Ha KT, Lee SY, Shin HK, Choi BT. Therapeutic potential of a combination of electroacupuncture and TrkB-expressing mesenchymal stem cells for ischemic stroke[J]. Mol Neurobiol, 2019, 56:157-173. [54] Kang N, Zhang J, Yu X, Ma Y. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia[J]. Am J Transl Res, 2017, 9:2000-2012. [55] Liu H, Usprech JF, Parameshwar PK, Sun Y, Simmons CA. Combinatorial screen of dynamic mechanical stimuli for predictive control of MSC mechano-responsiveness[J]. Sci Adv, 2021, 7:eabe7204. [56] Alshihri A, Niu W, Kämmerer PW, Al-Askar M, Yamashita A, Kurisawa M, Spector M. The effects of shock wave stimulation of mesenchymal stem cells on proliferation, migration, and differentiation in an injectable gelatin matrix for osteogenic regeneration[J]. J Tissue Eng Regen Med, 2020, 14:1630-1640. [57] Chen KH, Hsiao HY, Glenn Wallace C, Lin KC, Li YC, Huang TH, Huang CR, Chen YL, Luo CW, Lee FY, Yip HK. Combined adipose-derived mesenchymal stem cells and low-energy extracorporeal shock wave therapy protect the brain from brain death-induced injury in rat[J]. J Neuropathol Exp Neurol, 2019, 78:65-77. [58] Qian J, Wang L, Li Q, Sha D, Wang J, Zhang J, Xu P, Fan G. Ultrasound-targeted microbubble enhances migration and therapeutic efficacy of marrow mesenchymal stem cell on rat middle cerebral artery occlusion stroke model[J]. J Cell Biochem, 2019, 120:3315-3322. [59] Cui H, Zhu Q, Xie Q, Liu Z, Gao Y, He Y, Tan X, Xu Y. Low intensity ultrasound targeted microbubble destruction assists MSCs delivery and improves neural function in brain ischaemic rats[J]. J Drug Target, 2020, 28:320-329. |