[1] Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377:162-172. [2] Marin B, Logroscino G, Boumédiene F, Labrunie A, Couratier P, Babron MC, Leutenegger AL, Preux PM, Beghi E. Clinical and demographic factors and outcome of amyotrophic lateral sclerosis in relation to population ancestral origin[J]. Eur J Epidemiol, 2016, 31:229-245. A, Vallat JM, Masson GL. [3] Mathis S, Goizet C, Soulages Genetics of amyotrophic lateral sclerosis:a review[J]. J Neurol Sci, 2019, 399:217-226. [4] Xu L, Chen L, Wang S, Feng J, Liu L, Liu G, Wang J, Zhan S, Gao P, Fan D. Incidence and prevalence of amyotrophic lateral sclerosis in urban China:a national population-based study[J]. J Neurol Neurosurg Psychiatry, 2020, 91:520-525. [5] Liu Z, Yuan Y, Wang M, Ni J, Li W, Huang L, Hu Y, Liu P, Hou X, Hou X, Du J, Weng L, Zhang R, Niu Q, Tang J, Jiang H, Shen L, Tang B, Wang J. Mutation spectrum of amyotrophic lateral sclerosis in Central South China[J]. Neurobiol Aging, 2021, 107:181-188. [6] Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3:17071. [7] Yousefian-Jazi A, Seol Y, Kim J, Ryu HL, Lee J, Ryu H. Pathogenic genome signatures that damage motor neurons in amyotrophic lateral sclerosis[J]. Cells, 2020, 9:2687. [8] Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics:where are we now[J]? Front Neurosci, 2019, 13:1310. [9] Wei Q, Chen X, Chen Y, Ou R, Cao B, Hou Y, Zhang L, Shang HF. Unique characteristics of the genetics epidemiology of amyotrophic lateral sclerosis in China[J]. Sci China Life Sci, 2019, 62:517-525. [10] Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology[J]. Br J Haematol, 2020, 188:367-382. [11] Kenna KP, van Doormaal PT, Dekker AM, Ticozzi N, Kenna BJ, Diekstra FP, van Rheenen W, van Eijk KR, Jones AR, Keagle P, Shatunov A, Sproviero W, Smith BN, van Es MA, Topp SD, Kenna A, Miller JW, Fallini C, Tiloca C, McLaughlin RL, Vance C, Troakes C, Colombrita C, Mora G, Calvo A, Verde F, Al-Sarraj S, King A, Calini D, de Belleroche J, Baas F, van der Kooi AJ, de Visser M, Ten Asbroek AL, Sapp PC, McKenna-Yasek D, Polak M, Asress S, Muñoz-Blanco JL, Strom TM, Meitinger T, Morrison KE, Lauria G, Williams KL, Leigh PN, Nicholson GA, Blair IP, Leblond CS, Dion PA, Rouleau GA, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, Boylan KB, Van Blitterswijk M, Rademakers R, Esteban-Pérez J, García-Redondo A, Van Damme P, Robberecht W, Chio A, Gellera C, Drepper C, Sendtner M, Ratti A, Glass JD, Mora JS, Basak NA, Hardiman O, Ludolph AC, Andersen PM, Weishaupt JH, Brown RH Jr, Al-Chalabi A, Silani V, Shaw CE, van den Berg LH, Veldink JH, Landers JE; SLAGEN Consortium. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis[J]. Nat Genet, 2016, 48:1037-1042. [12] Smith BN, Topp SD, Fallini C, Shibata H, Chen HJ, Troakes C, King A, Ticozzi N, Kenna KP, Soragia-Gkazi A, Miller JW, Sato A, Dias DM, Jeon M, Vance C, Wong CH, de Majo M, Kattuah W, Mitchell JC, Scotter EL, Parkin NW, Sapp PC, Nolan M, Nestor PJ, Simpson M, Weale M, Lek M, Baas F, Vianney de Jong JM, Ten Asbroek ALMA, Redondo AG, Esteban-Pérez J, Tiloca C, Verde F, Duga S, Leigh N, Pall H, Morrison KE, Al-Chalabi A, Shaw PJ, Kirby J, Turner MR, Talbot K, Hardiman O, Glass JD, De Belleroche J, Maki M, Moss SE, Miller C, Gellera C, Ratti A, Al-Sarraj S, Brown RH Jr, Silani V, Landers JE, Shaw CE. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis[J]. Sci Transl Med, 2017, 9:eaad9157. [13] Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing:is WGS the better WES[J]? Hum Genet, 2016, 135:359-362. [14] van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology[J]. Trends Genet, 2018, 34:666-681. [15] Shatunov A, Al-Chalabi A. The genetic architecture of ALS[J]. Neurobiol Dis, 2021, 147:105156. [16] Course MM, Gudsnuk K, Smukowski SN, Winston K, Desai N, Ross JP, Sulovari A, Bourassa CV, Spiegelman D, Couthouis J, Yu CE, Tsuang DW, Jayadev S, Kay MA, Gitler AD, Dupre N, Eichler EE, Dion PA, Rouleau GA, Valdmanis PN. Evolution of a human-specific tandem repeat associated with ALS[J]. Am J Hum Genet, 2020, 107:445-460. [17] Chang M, He L, Cai L. An overview of genome-wide association studies[J]. Methods Mol Biol, 2018, 1754:97-108. [18] Deng M, Wei L, Zuo X, Tian Y, Xie F, Hu P, Zhu C, Yu F, Meng Y, Wang H, Zhang F, Ma H, Ye R, Cheng H, Du J, Dong W, Zhou S, Wang C, Wang Y, Wang J, Chen X, Sun Z, Zhou N, Jiang Y, Liu X, Li X, Zhang N, Liu N, Guan Y, Han Y, Han Y, Lv X, Fu Y, Yu H, Xi C, Xie D, Zhao Q, Xie P, Wang X, Zhang Z, Shen L, Cui Y, Yin X, Cheng H, Liang B, Zheng X, Lee TM, Chen G, Zhou F, Veldink JH, Robberecht W, Landers JE, Andersen PM, Al-Chalabi A, Shaw C, Liu C, Tang B, Xiao S, Robertson J, Zhang F, van den Berg LH, Sun L, Liu J, Yang S, Ju X, Wang K, Zhang X. Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis[J]. Nat Genet, 2013, 45:697-700. [19] Kirola L, Mukherjee A, Mutsuddi M. Recent updates on the genetics of amyotrophic lateral sclerosis and frontotemporal dementia[J]. Mol Neurobiol, 2022, 59:5673-5694. [20] McCann EP, Henden L, Fifita JA, Zhang KY, Grima N, Bauer DC, Chan Moi Fat S, Twine NA, Pamphlett R, Kiernan MC, Rowe DB, Williams KL, Blair IP. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis[J]. J Med Genet, 2020[.Epub ahead of print] [21] Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis:mechanisms and therapeutics in the epigenomic era[J]. Nat Rev Neurol, 2015, 11:266-279. [22] Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic regulation of ALS and CMT:a lesson from Drosophila models[J]. Int J Mol Sci, 2021, 22:491. [23] Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. DNA methylation:a promising approach in management of Alzheimer's disease and other neurodegenerative disorders[J]. Biology (Basel), 2022, 11:90. [24] Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, Yung R, Ruden DM, Callaghan BC, Feldman EL. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis[J]. PLoS One, 2012, 7:e52672. [25] Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C, Zheng Y, Ghani M, Dib S, Keith J, Robertson J, Rogaeva E. Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion[J]. Am J Hum Genet, 2013, 92: 981-989. [26] Huai J, Zhang Z. Structural properties and interaction partners of familial ALS-associated SOD1 mutants[J]. Front Neurol, 2019, 10:527. [27] Hayashi Y, Homma K, Ichijo H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS[J]. Adv Biol Regul, 2016, 60:95-104. [28] Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative genes in amyotrophic lateral sclerosis and protein degradation pathways:a link to neurodegeneration[J]. Mol Neurobiol, 2018, 55:6480-6499. [29] Lambert-Smith IA, Saunders DN, Yerbury JJ. Proteostasis impairment and ALS[J]. Prog Biophys Mol Biol, 2022, 174:3-27. [30] van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, Brown PH, Baker MC, Finch NA, Bauer PO, Serrano G, Beach TG, Josephs KA, Knopman DS, Petersen RC, Boeve BF, Graff-Radford NR, Boylan KB, Petrucelli L, Dickson DW, Rademakers R. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72):a cross-sectional cohort study[J]. Lancet Neurol, 2013, 12:978-988. [31] Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity[J]. Cell Mol Life Sci, 2021, 78:5707-5729. [32] Zaepfel BL, Rothstein JD. RNA is a double-edged sword in ALS pathogenesis[J]. Front Cell Neurosci, 2021, 15:708181. [33] Brenner D, Yilmaz R, Müller K, Grehl T, Petri S, Meyer T, Grosskreutz J, Weydt P, Ruf W, Neuwirth C, Weber M, Pinto S, Claeys KG, Schrank B, Jordan B, Knehr A, Günther K, Hübers A, Zeller D, Kubisch C, Jablonka S, Sendtner M, Klopstock T, de Carvalho M, Sperfeld A, Borck G, Volk AE, Dorst J, Weis J, Otto M, Schuster J, Del Tredici K, Braak H, Danzer KM, Freischmidt A, Meitinger T, Strom TM, Ludolph AC, Andersen PM, Weishaupt JH; German ALS network NMD-NET. Hot-spot KIF5A mutations cause familial ALS[J]. Brain, 2018, 141:688- 697. [34] Castellanos-Montiel MJ, Chaineau M, Durcan TM. The neglected genes of ALS:cytoskeletal dynamics impact synaptic degeneration in ALS[J]. Front Cell Neurosci, 2020, 14:594975. [35] Perrone F, Nguyen HP, Van Mossevelde S, Moisse M, Sieben A, Santens P, De Bleecker J, Vandenbulcke M, Engelborghs S, Baets J, Cras P, Vandenberghe R, De Jonghe P, De Deyn PP, Martin JJ, Van Damme P, Van Broeckhoven C, van der Zee J; Belgian Neurology Consortium. Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients[J]. Neurobiol Aging, 2017, 51:177.e9-16. [36] Liu X, Henty-Ridilla JL. Multiple roles for the cytoskeleton in ALS[J]. Exp Neurol, 2022, 355:114143. [37] Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis[J]. Transl Neurodegener, 2022, 11:46. [38] Branchu J, Boutry M, Sourd L, Depp M, Leone C, Corriger A, Vallucci M, Esteves T, Matusiak R, Dumont M, Muriel MP, Santorelli FM, Brice A, El Hachimi KH, Stevanin G, Darios F. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration[J]. Neurobiol Dis, 2017, 102:21-37. [39] Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS:mechanistic insights and therapeutic implications[J]. Autophagy, 2022, 18:254-282. [40] Lattante S, de Calbiac H, Le Ber I, Brice A, Ciura S, Kabashi E. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD[J]. Hum Mol Genet, 2015, 24:1682-1690. [41] Liu T, Woo JA, Bukhari MZ, LePochat P, Chacko A, Selenica MB, Yan Y, Kotsiviras P, Buosi SC, Zhao X, Kang DE. CHCHD10-regulated OPA1-mitofilin complex mediates TDP-43- induced mitochondrial phenotypes associated with frontotemporal dementia[J]. FASEB J, 2020, 34:8493-8509. [42] Candelise N, Salvatori I, Scaricamazza S, Nesci V, Zenuni H, Ferri A, Valle C. Mechanistic insights of mitochondrial dysfunction in amyotrophic lateral sclerosis:an update on a lasting relationship[J]. Metabolites, 2022, 12:233. [43] Moll T, Shaw PJ, Cooper-Knock J. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration[J]. Brain, 2020, 143:1332-1340. [44] Kölbel H, Kraft F, Hentschel A, Czech A, Gangfuss A, Mohassel P, Nguyen C, Stenzel W, Schara-Schmidt U, Preuβe C, Roos A. New insights into the neuromyogenic spectrum of a gain of function mutation in SPTLC1[J]. Genes (Basel), 2022, 13:893. [45] Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, Foley AR, Hu Y, Saute JAM, Moreira AL, Kok F, Introna A, Logroscino G, Grunseich C, Nickolls AR, Pourshafie N, Neuhaus SB, Saade D, Gangfuβ A, Kölbel H, Piccus Z, Le Pichon CE, Fiorillo C, Ly CV, Töpf A, Brady L, Specht S, Zidell A, Pedro H, Mittelmann E, Thomas FP, Chao KR, Konersman CG, Cho MT, Brandt T, Straub V, Connolly AM, Schara U, Roos A, Tarnopolsky M, Höke A, Brown RH, Lee CH, Hornemann T, Dunn TM, Bönnemann CG. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis[J]. Nat Med, 2021, 27:1197-1204. [46] Dodge JC, Treleaven CM, Pacheco J, Cooper S, Bao C, Abraham M, Cromwell M, Sardi SP, Chuang WL, Sidman RL, Cheng SH, Shihabuddin LS. Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis[J]. Proc Natl Acad Sci USA, 2015, 112:8100-8105. [47] Russell KL, Downie JM, Gibson SB, Tsetsou S, Keefe MD, Duran JA, Figueroa KP, Bromberg MB, Murtaugh LC, Bonkowsky JL, Pulst SM, Jorde LB. Pathogenic effect of TP73 gene variants in people with amyotrophic lateral sclerosis[J]. Neurology, 2021, 97:e225-235. [48] Wang M, Liu Z, Yuan Y, Ni J, Li W, Hu Y, Liu P, Hou X, Huang L, Jiao B, Shen L, Jiang H, Tang B, Wang J. A novel potentially pathogenic rare variant in the DNAJC7 gene identified in amyotrophic lateral sclerosis patients from mainland China[J]. Front Genet, 2020, 11:821. |