[1] Dlaka D, Švaco M, Chudy D, Jerbić B, Šekoranja B, Šuligoj F, Vidaković J, Romić D, Raguž M. Frameless stereotactic brain biopsy:a prospective study on robot-assisted brain biopsies performed on 32 patients by using the RONNA G4 system[J]. Int J Med Robot, 2021, 17:e2245. [2] Wu D, Li G, Patel N, Yan J, Kim GH, Monfaredi R, Cleary K, Iordachita I. Remotely actuated needle driving device for MRI-guided percutaneous interventions:force and accuracy evaluation[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 64:1985-1989. [3] Li G, Patel NA, Burdette EC, Pilitsis JG, Su H, Fischer GS. A fully actuated robotic assistant for MRI-guided precision conformal ablation of brain tumors[J]. IEEE ASME Trans Mechatron, 2021, 26:255-266. [4] Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP, Fischer GS. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions[J]. Proc IEEE Inst Electr Electron Eng, 2022, 110:968-992. [5] Farooq MU, Ko SY. A decade of MRI compatible robots:systematic review[J]. IEEE Trans Robot, 2022:1-23. [6] Li G, Patel NA, Wang Y, Dumoulin C, Loew W, Loparo O, Schneider K, Sharma K, Cleary K, Fritz J, Iordachita I. Fully actuated body-mounted robotic system for MRI-guided lower back pain injections:initial phantom and cadaver studies[J]. IEEE Robot Autom Lett, 2020, 5:5245-5251. [7] Li G, Patel NA, Sharma K, Monfaredi R, Dumoulin C, Fritz J, Iordachita I, Cleary K. Body-mounted robotics for interventional MRI procedures[J]. IEEE Trans Med Robot Bionics, 2020, 2:557-560. [8] Wang X, Cheng SS, Desai JP. Design, analysis, and evaluation of a remotely actuated MRI-compatible neurosurgical robot[J]. IEEE Robot Autom Lett, 2018, 3:2144-2151. [9] Lu M, Zhang Y, Du H. Design and control of a novel magnetic resonance imaging-compatible breast intervention robot[J]. Int J Adv Robot Syst, 2020, 17:1495-1506. [10] Jia XH, Zhang YD, Du HY, Jiang JG, Yan Y. Analysis and research of double tendon-sheath transmission under nuclear magnetic environment[J]. Yi Qi Yi Biao Xue Bao, 2019, 40:242-253. 贾小红, 张永德, 杜海艳, 姜金刚, Yan Yu. 应用于核磁环境的双腱鞘传动分析与研究[J]. 仪器仪表学报, 2019, 40:242-253. [11] Kim D, Kobayashi E, Dohi T, Sakuma I. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery[C]. International Conference on Medical Image Computing and Computer-assisted Intervention-MICCAI 2002, Tokyo, Japan, 2002. Berlin, Heidelberg:Springer, 2002:99-106[2022-11-14]. https://link.springer.com/chapter/10.1007/3-540-45786-0_13. [12] Dong ZY, Guo ZY, Lee KH, Fang G, Tang WH, Chang HC, Chan TM, Kwok KW. High-performance continuous hydraulic motor for MR safe robotic teleoperation[J]. IEEE Robot Autom Lett, 2019, 4:1964-1971. [13] He ZL, Dong ZY, Fang G, Ho DL, Cheung CL, Chang HC, Chong CN, Chan YK, Chan TM, Kwok KW. Design of a percutaneous MRI-guided needle robot with soft fluid-driven actuator[J]. IEEE Robot Autom Lett, 2020, 5:2100-2107. [14] Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement[J]. Urology, 2006, 68:1313-1317. [15] Yang B, Tan UX, McMillan A, Gullapalli R, Desai JP. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines[J]. IEEE ASME Trans Mechatron, 2011, 16:1040-1048. [16] Musa M, Sengupta S, Chen Y. MRI-compatible soft robotic sensing pad for head motion detection[J]. IEEE Robot Autom Lett, 2022, 7:3632-3639. [17] Meng D, Wei W, Tang C, Wang W, Ding X. Modeling of a 6-DOF parallel manipulator driven by pneumatic muscles[C]. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 2017. New York:IEEE, 2017:688-692[2022-11-14]. https://ieeexplore.ieee.org/document/8274861. [18] Gao X, Zhang SJ, Deng J, Liu YX. Development of a small two-dimensional robotic spherical joint using a bonded-type piezoelectric actuator[J]. IEEE Trans Ind Electron, 2021, 68:724-733. [19] Song SE, Tokuda J, Tuncali K, Tempany CM, Zhang E, Hata N. Development and preliminary evaluation of a motorized needle guide template for MRI-guided targeted prostate biopsy[J]. IEEE Trans Biomed Eng, 2013, 60:3019-3027. [20] Sergi F, Erwin AC, O'Malley MK. Interaction control capabilities of an MR-compatible compliant actuator for wrist sensorimotor protocols during fMRI[J]. IEEE/ASME Trans Mechatron, 2015, 20:2678-2690. [21] Shi Y, Li N, Tremblay C, Martel S. A piezoelectric robotic system for MRI targeting assessments of therapeutics during dipole field navigation[J]. IEEE/ASME Trans Mechatron, 2021, 26:214-225. [22] Qin YD, Soundararajan R, Jia RR, Huang SL. Direct inverse linearization of piezoelectric actuator's initial loading curve and its applications in Full-Field Optical Coherence Tomography (FF-OCT)[J]. Mech Syst Signal Proc, 2021, 148:107147. [23] Qin YD, Duan H, Han JD. Direct inverse hysteresis compensation of piezoelectric actuators using adaptive Kalman filter[J]. IEEE Trans Ind Electron, 2022, 69:9385-9395. [24] Mutlu S, Yasa O, Erin O, Sitti M. Magnetic resonance imaging-compatible optically powered miniature wireless modular lorentz force actuators[J]. Adv Sci (Weinh), 2020, 8:2002948. [25] Aghdam AN, Liu XP. A novel path planner for steerable bevel-tip needles to reach multiple targets with obstacles[J]. IEEE Trans Instrum Measur, 2020, 69:7636-7645. [26] Rox M, Emerson M, Ertop TE, Fried I, Fu M, Hoelscher J, Kuntz A, Granna J, Mitchell J, Lester M, Maldonado F, Gillaspie EA, Akulian JA, Alterovitz R, Webster RJ 3rd. Decoupling steerability from diameter:helical dovetail laser patterning for steerable needles[J]. IEEE Access, 2020, 8:181411-181419. [27] Hong A, Petruska AJ, Zemmar A, Nelson BJ. Magnetic control of a flexible needle in neurosurgery[J]. IEEE Trans Biomed Eng, 2021, 68:616-627. [28] Cotler MJ, Rousseau EB, Ramadi KB, Fang J, Graybiel AM, Langer R, Cima MJ. Steerable microinvasive probes for localized drug delivery to deep tissue[J]. Small, 2019, 15:e1901459. [29] Bergeles C, Gosline AH, Vasilyev NV, Codd PJ, Del Nido PJ, Dupont PE. Concentric tube robot design and optimization based on task and anatomical constraints[J]. IEEE Trans Robot, 2015, 31:67-84. [30] Rox MF, Ropella DS, Hendrick RJ, Blum E, Naftel RP, Bow HC, Herrell SD, Weaver KD, Chambless LB, Webster RJ 3rd. Mechatronic design of a two-arm concentric tube robot system for rigid neuroendoscopy[J]. IEEE ASME Trans Mechatron, 2020, 25:1432-1443. [31] Swaney PJ, Burgner J, Gilbert HB, Webster RJ 3rd. A flexure-based steerable needle:high curvature with reduced tissue damage[J]. IEEE Trans Biomed Eng, 2013, 60:906-909. [32] Ryu SC, Quek ZF, Koh JS, Renaud P, Black RJ, Moslehi B, Daniel BL, Cho KJ, Cutkosky MR. Design of an optically controlled MR-compatible active needle[J]. IEEE Trans Robot, 2015, 31:1-11. [33] Hong A, Boehler Q, Moser R, Zemmar A, Stieglitz L, Nelson BJ. 3D path planning for flexible needle steering in neurosurgery[J]. Int J Med Robot, 2019, 15:e1998. [34] Yokoyama K, Nakagawa H, Shah DC, Lambert H, Leo G, Aeby N, Ikeda A, Pitha JV, Sharma T, Lazzara R, Jackman WM. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus[J]. Circ Arrhythm Electrophysiol, 2008, 1:354-362. [35] Polygerinos P, Seneviratne LD, Razavi R, Schaeffter T, Althoefer K. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures[J]. IEEE/ASME Trans Mechatron, 2013, 18:386-396. [36] Uzun D, Ülgen O, Kocatürk Ö. Optical force sensor with enhanced resolution for MRI guided biopsy[J]. IEEE Sensors J, 2020, 20:9202-9208. [37] Peng JL, Wang Y. Medical image segmentation with limited supervision:a review of deep network models[J]. IEEE Access, 2021, 9:36827-36851. [38] Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G. Deep semantic segmentation of natural and medical images:a review[J]. Art Intel Rev, 2021, 54:137-178. [39] Bohlender S, Oksuz I, Mukhopadhyay A. A survey on shape-constraint deep learning for medical image segmentation[J]. IEEE Rev Biomed Eng, 2021.[Epub ahead of print] [40] Lei T, Wang R, Wan Y, Du X, Meng H, Nandi AK. Medical image segmentation using deep learning:a survey[J]. IET Image Process, 2020, 16:1243-1267. [41] Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori A, Criminisi A, Rueckert D, Glocker B. Deepmedic for brain tumor segmentation[M]//Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H. Brainlesion:glioma, multiple sclerosis, stroke and traumatic brain injuries. Berlin, Heidelberg:Springer, 2017:138-149. [42] Zhou C, Ding C, Wang X, Lu Z, Tao D. One-pass multi-task networks with cross-task guided attention for brain tumor segmentation[J]. IEEE Trans Image Process, 2020.[Epub ahead of print] [43] Wang HP, Shen L, Zhao H, Fan CS, Li ZX, Zheng FJ, Zhang C, Han JD. Operation and image integrated surgery path planning for robotic cochlear precise implantation[J]. Ji Qi Ren, 2021, 43:443-452. 王鸿鹏, 申林, 赵辉, 范崇山, 黎正鑫, 郑凡君, 张晨, 韩建达. 人工耳蜗精准植入机器人术像一体化手术路径规划[J]. 机器人, 2021, 43:443-452. [44] Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B. 3D deep learning on medical images:a review[J]. Sensors (Basel), 2020, 20:5097. [45] Haskins G, Kruger U, Yan PK. Deep learning in medical image registration:a survey[J]. Mach Vision App, 2020, 31:1-18. [46] Boveiri HR, Khayami R, Javidan R, Mehdizadeh A. Medical image registration using deep neural networks:a comprehensive review[J]. Comput Electr Eng, 2020, 87:106767. [47] Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image registration:a review[J]. Phys Med Biol, 2020, 65:20TR01. [48] Wu G, Kim M, Wang Q, Munsell BC, Shen D. Scalable high-performance image registration framework by unsupervised deep feature representations learning[J]. IEEE Trans Biomed Eng, 2016, 63:1505-1516. [49] Cheng X, Zhang L, Zheng YF. Deep similarity learning for multimodal medical images[J]. Comput Methods Biomechan Biomed Eng, 2018, 6:248-252. [50] Han JD, Chen J, Yu NB, Dang Y. Active modeling and control of the ring-shaped pneumatic actuator:an experimental study[J]. IEEE/ASME Trans Mechatron, 2022, 27:2918-2929. [51] Wang XY, Yu NB, Bie DY, Han JD, Fang YC. A novel ESMF-based observer and control scheme for a type of tendon-sheath hysteresis system[J]. Automatica, 2021, 131:109800. [52] Bai DM. System design and security mechanism research of the master-slave controlled catheter robot[D]. Jiangsu:Nanjing University of Aeronautics and Astronautics, 2020. 白东明. 主从控制式导管机器人系统设计与安全机制研究[D]. 江苏:南京航空航天大学, 2020. [53] Yan YG, Wang HB, Yu HY, Wang FH, Fang JY, Niu JY, Guo SX. Machine learning-based surgical state perception and collaborative control for a vascular interventional robot[J]. IEEE Sensors J, 2022, 22:7106-7118. [54] Saini S, Orlando MF, Pathak PM. Adaptive control of a master-slave based robotic surgical system with haptic feedback[J]. IEEE Trans Auto Sci Eng, 2022.[Epub ahead of print] [55] Yu N, Yu Y, Lin J, Yang Y, Wu J, Liang S, Wu J, Han J. A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery[J]. Comput Methods Programs Biomed, 2022, 225:107005. |