[1] Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7:33. [2] Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders[J]. Nat Rev Neurosci, 2011, 12:723-738. [3] Narayanan S, Schmithorst V, Panigrahy A. Arterial spin labeling in pediatric neuroimaging[J]. Semin Pediatr Neurol, 2020, 33:100799. [4] Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial spin labeling applications in pediatric and adult neurologic disorders[J]. J Magn Reson Imaging, 2022, 55:698-719. [5] Quality Management and Safety Management Group, Radiology Branch, Chinese Medical Association; Magnetic Resonance Group, Radiology Branch, Chinese Medical Association. Expert consensus on standardized application of arterial spin labeled brain perfusion MRI[J]. Zhonghua Fang She Xue Za Zhi, 2016, 50:817-824. 中华医学会放射学分会质量管理与安全管理学组, 中华医学会放射学分会磁共振学组. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50:817-824. [6] Golay X, Ho ML. Multidelay ASL of the pediatric brain[J]. Br J Radiol, 2022, 95:20220034. [7] Huang CW, Hsu SW, Chang YT, Huang SH, Huang YC, Lee CC, Chang WN, Lui CC, Chen NC, Chang CC. Cerebral perfusion insufficiency and relationships with cognitive deficits in Alzheimer's disease:a multiparametric neuroimaging study[J]. Sci Rep, 2018, 8:1541. [8] Suo X, Lei D, Cheng L, Li N, Zuo P, Wang DJJ, Huang X, Lui S, Kemp GJ, Peng R, Gong Q. Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease[J]. Hum Brain Mapp, 2019, 40:1317-1327. [9] Sun M, Wang YL, Li R, Jiang J, Zhang Y, Li W, Zhang Y, Jia Z, Chappell M, Xu J. Potential diagnostic applications of multi-delay arterial spin labeling in early Alzheimer's disease:the Chinese imaging, biomarkers, and lifestyle study[J]. Front Neurosci, 2022, 16:934471. [10] Dai W, Fong T, Jones RN, Marcantonio E, Schmitt E, Inouye SK, Alsop DC. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort[J]. J Magn Reson Imaging, 2017, 45:472-481. [11] Xu X, Tan Z, Fan M, Ma M, Fang W, Liang J, Xiao Z, Shi C, Luo L. Comparative study of multi-delay pseudo-continuous arterial spin labeling perfusion MRI and CT perfusion in ischemic stroke disease[J]. Front Neuroinform, 2021, 15:719719. [12] Chappell MA, McConnell FAK, Golay X, Günther M, Hernandez-Tamames JA, van Osch MJ, Asllani I. Partial volume correction in arterial spin labeling perfusion MRI:a method to disentangle anatomy from physiology or an analysis step too far[J]? Neuroimage, 2021, 238:118236. [13] Ahlgren A, Wirestam R, Petersen ET, Ståhlberg F, Knutsson L. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling[J]. NMR Biomed, 2014, 27:1112-1122. [14] Ssali T, Anazodo UC, Narciso L, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Finger E, St Lawrence K. Sensitivity of arterial spin labeling for characterization of longitudinal perfusion changes in frontotemporal dementia and related disorders[J]. Neuroimage Clin, 2022, 35:102853. [15] Claassen JA, Jansen RW. Cholinergically mediated augmentation of cerebral perfusion in Alzheimer's disease and related cognitive disorders:the cholinergic-vascular hypothesis[J]. J Gerontol A Biol Sci Med Sci, 2006, 61:267-271. [16] Althubeati S, Avery A, Tench CR, Lobo DN, Salter A, Eldeghaidy S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults:a systematic review and functional neuroimaging meta-analysis[J]. Neurosci Biobehav Rev, 2022, 136:104603. [17] Charroud C, Menjot de Champfleur N, Sanrey E, Pfeuffer J, Deverdun J, Le Bars E, Coubes P. Differential effects of hunger on cerebral blood flow in healthy adolescents[J]. Behav Brain Res, 2020, 383:112505. [18] Hays CC, Zlatar ZZ, Wierenga CE. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer's disease[J]. Cell Mol Neurobiol, 2016, 36:167-179. [19] Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, Rabin L, Rentz DM, Rodriguez-Gomez O, Saykin AJ, Sikkes SAM, Smart CM, Wolfsgruber S, Wagner M. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19:271-278. [20] Li W, Jiang J, Zou X, Zhang Y, Sun M, Jia Z, Li W, Xu J. The characteristics of arterial spin labeling cerebral blood flow in patients with subjective cognitive decline:the Chinese imaging, biomarkers, and lifestyle study[J]. Front Neurosci, 2022, 16:961164. [21] Duan W, Sehrawat P, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, Kuller LH, Lopez OL, Gach HM, Dai W. Cerebral blood flow is associated with diagnostic class and cognitive decline in Alzheimer's disease[J]. J Alzheimers Dis, 2020, 76:1103-1120. [22] Sierra-Marcos A. Regional cerebral blood flow in mild cognitive impairment and Alzheimer's disease measured with arterial spin labeling magnetic resonance imaging[J]. Int J Alzheimers Dis, 2017:ID5479597. [23] Ma HR, Pan PL, Sheng LQ, Dai ZY, Wang GD, Luo R, Chen JH, Xiao PR, Zhong JG, Shi HC. Aberrant pattern of regional cerebral blood flow in Alzheimer's disease:a voxel-wise meta-analysis of arterial spin labeling MR imaging studies[J]. Oncotarget, 2017, 8:93196-93208. [24] Juttukonda MR, Li B, Almaktoum R, Stephens KA, Yochim KM, Yacoub E, Buckner RL, Salat DH. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging[J]. Neuroimage, 2021, 230:117807. [25] Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease[J]. Acta Neuropathol, 2016, 131:645-658. [26] Østergaard L, Aamand R, Gutiérrez-Jiménez E, Ho YC, Blicher JU, Madsen SM, Nagenthiraja K, Dalby RB, Drasbek KR, Møller A, Brændgaard H, Mouridsen K, Jespersen SN, Jensen MS, West MJ. The capillary dysfunction hypothesis of Alzheimer's disease[J]. Neurobiol Aging, 2013, 34:1018-1031. [27] Fazlollahi A, Calamante F, Liang X, Bourgeat P, Raniga P, Dore V, Fripp J, Ames D, Masters CL, Rowe CC, Connelly A, Villemagne VL, Salvado O; Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease[J]. J Magn Reson Imaging, 2020, 51:505-513. [28] Bangen KJ, Clark AL, Edmonds EC, Evangelista ND, Werhane ML, Thomas KR, Locano LE, Tran M, Zlatar ZZ, Nation DA, Bondi MW, Delano-Wood L. Cerebral blood flow and amyloid-β interact to affect memory performance in cognitively normal older adults[J]. Front Aging Neurosci, 2017, 9:181. [29] Yan L, Liu CY, Wong KP, Huang SC, Mack WJ, Jann K, Coppola G, Ringman JM, Wang DJJ. Regional association of pCASL-MRI with FDG-PET and PiB-PET in people at risk for autosomal dominant Alzheimer's disease[J]. Neuroimage Clin, 2017, 17:751-760. [30] Rubinski A, Tosun D, Franzmeier N, Neitzel J, Frontzkowski L, Weiner M, Ewers M. Lower cerebral perfusion is associated with tau-PET in the entorhinal cortex across the Alzheimer's continuum[J]. Neurobiol Aging, 2021, 102:111-118. [31] Gauthier S, Zhang H, Ng KP, Pascoal TA, Rosa-Neto P. Impact of the biological definition of Alzheimer's disease using amyloid, tau and neurodegeneration (ATN):what about the role of vascular changes, inflammation, Lewy body pathology[J]? Transl Neurodegener, 2018, 7:12. [32] Bagi Z, Kroenke CD, Fopiano KA, Tian Y, Filosa JA, Sherman LS, Larson EB, Keene CD, Degener O'Brien K, Adeniyi PA, Back SA. Association of cerebral microvascular dysfunction and white matter injury in Alzheimer's disease[J]. Geroscience, 2022, 44:1-14. [33] Badji A, Westman E. Cerebrovascular pathology in Alzheimer's disease:hopes and gaps[J]. Psychiatry Res Neuroimaging, 2020, 306:111184. [34] Neumann K, Günther M, Düzel E, Schreiber S. Microvascular impairment in patients with cerebral small vessel disease assessed with arterial spin labeling magnetic resonance imaging:a pilot study[J]. Front Aging Neurosci, 2022, 14:871612. [35] Zhang R, Huang P, Wang S, Jiaerken Y, Hong H, Zhang Y, Yu X, Lou M, Zhang M. Decreased cerebral blood flow and delayed arterial transit are independently associated with white matter hyperintensity[J]. Front Aging Neurosci, 2022, 14:762745. [36] Ferro DA, Mutsaerts HJ, Hilal S, Kuijf HJ, Petersen ET, Petr J, van Veluw SJ, Venketasubramanian N, Yeow TB, Biessels GJ, Chen C. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion[J]. J Cereb Blood Flow Metab, 2020, 40:1869-1878. [37] Huang H, Zhao K, Zhu W, Li H, Zhu W. Abnormal cerebral blood flow and functional connectivity strength in subjects with white matter hyperintensities[J]. Front Neurol, 2021, 12:752762. [38] Promjunyakul NO, Dodge HH, Lahna D, Boespflug EL, Kaye JA, Rooney WD, Silbert LC. Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time[J]. Neurology, 2018, 90:e2119-2126. [39] McKiernan EF, Mak E, Dounavi ME, Wells K, Ritchie C, Williams G, Su L, O'Brien J. Regional hyperperfusion in cognitively normal APOE ε4 allele carriers in mid-life:analysis of ASL pilot data from the PREVENT-Dementia cohort[J]. J Neurol Neurosurg Psychiatry, 2020, 91:861-866. [40] Michels L, Warnock G, Buck A, Macauda G, Leh SE, Kaelin AM, Riese F, Meyer R, O'Gorman R, Hock C, Kollias S, Gietl AF. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers[J]. J Cereb Blood Flow Metab, 2016, 36:581-595. [41] Wang J, Peng G, Liu P, Tan X, Luo B; Alzheimer's Disease Neuroimaging Initiative. Regulating effect of CBF on memory in cognitively normal older adults with different ApoE genotype:the Alzheimer's Disease Neuroimaging Initiative (ADNI)[J]. Cogn Neurodyn, 2019, 13:513-518. [42] Benedictus MR, Leeuwis AE, Binnewijzend MA, Kuijer JP, Scheltens P, Barkhof F, van der Flier WM, Prins ND. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer's disease[J]. Eur Radiol, 2017, 27:1169-1175. [43] Bangen KJ, Thomas KR, Sanchez DL, Edmonds EC, Weigand AJ, Delano-Wood L, Bondi MW; Alzheimer's Disease Neuroimaging Initiative. Entorhinal perfusion predicts future memory decline, neurodegeneration, and white matter hyperintensity progression in older adults[J]. J Alzheimers Dis, 2021, 81:1711-1725. [44] De Vis JB, Peng SL, Chen X, Li Y, Liu P, Sur S, Rodrigue KM, Park DC, Lu H. Arterial-spin-labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals:a 4-year longitudinal study[J]. J Magn Reson Imaging, 2018, 48:449-458. [45] Duan W, Zhou GD, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, Kuller LH, Lopez OL, Gach HM, Dai W. Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer's disease and cognitive decline:an arterial spin labeling follow-up study[J]. J Alzheimers Dis, 2021, 82:293-305. [46] Weijs RWJ, Shkredova DA, Brekelmans ACM, Thijssen DHJ, Claassen JAHR. Longitudinal changes in cerebral blood flow and their relation with cognitive decline in patients with dementia:current knowledge and future directions[J]. Alzheimers Dement, 2022.[Epub ahead of print] |