[1] Report on stroke prevention and treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2020[J]. Zhongguo Nao Xue Guan Bing Za Zhi, 2022, 19:136-144. 《中国脑卒中防治报告2020》编写组. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19:136-144. [2] Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, Pu C, Jia J, Zhang T, Liu X, Zhang S, Xie P, Fan D, Ji X, Wong KL, Wang L; China Stroke Study Collaboration. Stroke in China:advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18:394-405. [3] Liu M, Ushiba J. Brain-machine Interface (BMI)-based neurorehabilitation for post-stroke upper limb paralysis[J]. Keio J Med, 2022, 71:82-92. [4] Baniqued PDE, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, Mushtaq F, Holt RJ. Brain-computer interface robotics for hand rehabilitation after stroke:a systematic review[J]. J Neuroeng Rehabil, 2021, 18:15. [5] Everard G, Declerck L, Detrembleur C, Leonard S, Bower G, Dehem S, Lejeune T. New technologies promoting active upper limb rehabilitation after stroke:an overview and network meta-analysis[J]. Eur J Phys Rehabil Med, 2022, 58:530-548. [6] Zhang L, Jia G, Ma J, Wang S, Cheng L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke:a meta-analysis of randomized controlled trials[J]. J Neuroeng Rehabil, 2022, 19:76. [7] Yu L, Yu HL. Research and development of upper limb rehabilitation robot technology[J]. Sheng Wu Yi Xue Gong Cheng Xue Jin Zhan, 2020, 41:134-138. 余灵, 喻洪流. 上肢康复机器人研究进展[J]. 生物医学工程学进展, 2020, 41:134-138. [8] Terranova TT, Simis M, Santos ACA, Alfieri FM, Imamura M, Fregni F, Battistella LR. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke:results from a randomized clinical trial[J]. Front Neurorobot, 2021, 15:684019. [9] Doumas I, Everard G, Dehem S, Lejeune T. Serious games for upper limb rehabilitation after stroke:a meta-analysis[J]. J Neuroeng Rehabil, 2021, 18:100. [10] Chien WT, Chong YY, Tse MK, Chien CW, Cheng HY. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients:a systematic review and meta-analysis[J]. Brain Behav, 2020, 10:e01742. [11] Gustavsen M, Jansen R, Kjendahl A, Lorentzen A. Motor Relearning Program approach improves short-term motor outcomes and reduces hospital stay after stroke[J]. Aust J Physiother, 2002, 48:59. [12] Sun Y, Zehr EP. Training-induced neural plasticity and strength are amplified after stroke[J]. Exerc Sport Sci Rev, 2019, 47:223-229. [13] Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord[J]. J Appl Physiol (1985), 2006, 101:1776-1782. [14] Shi XQ, Heung HL, Tang ZQ, Li Z, Tong KY. Effects of a soft robotic hand for hand rehabilitation in chronic stroke survivors[J]. J Stroke Cerebrovasc Dis, 2021, 30:105812. [15] Nam C, Rong W, Li W, Cheung C, Ngai W, Cheung T, Pang M, Li L, Hu J, Wai H, Hu X. An exoneuromusculoskeleton for self-help upper limb rehabilitation after stroke[J]. Soft Robot, 2022, 9:14-35. [16] Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation:from designing to application[J]. Comput Biol Med, 2020, 123:103843. [17] Gao X, Wang Y, Chen X, Gao S. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends Cogn Sci, 2021, 25:671-684. [18] Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms[J]. J Neural Eng, 2019, 16:011001. [19] Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012, 485:372-375. [20] Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, Galicia-Alvarado MA, Cantillo-Negrete J. Longitudinal analysis of stroke patients' brain rhythms during an intervention with a brain-computer interface[J]. Neural Plast, 2019:ID7084618. [21] Ramos-Murguialday A, Curado MR, Broetz D, Yilmaz Ö, Brasil FL, Liberati G, Garcia-Cossio E, Cho W, Caria A, Cohen LG, Birbaumer N. Brain-machine interface in chronic stroke:randomized trial long-term follow-up[J]. Neurorehabil Neural Repair, 2019, 33:188-198. [22] Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action:comparing meta-analyses of imagery, observation, and execution[J]. Neurosci Biobehav Rev, 2018, 94:31-44. [23] Chen L, Gu B, Wang Z, Zhang L, Xu M, Liu S, He F, Ming D. EEG-controlled functional electrical stimulation rehabilitation for chronic stroke:system design and clinical application[J]. Front Med, 2021, 15:740-749. [24] Nojima I, Sugata H, Takeuchi H, Mima T. Brain-computer interface training based on brain activity can induce motor recovery in patients with stroke:a meta-analysis[J]. Neurorehabil Neural Repair, 2022, 36:83-96. [25] Hogan N, Krebs HI, Charnnarong J, Srikrishna P, Sharon A. MIT-MANUS:a workstation for manual therapy and training. Ⅰ[C]. Proceedings IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, 1992. New York:IEEE, 1992:161-165[2022-09-30]. https://ieeexplore.ieee.org/document/253895. [26] Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation[J]. IEEE Trans Rehabil Eng, 1998, 6:75-87. [27] Sheng B, Xie S, Tang L, Deng C, Zhang Y. An industrial robot-based rehabilitation system for bilateral exercises[J]. IEEE Access, 2019, 7:151282-151294. [28] Richardson MC, Tears C, Morris A, Alexanders J. The effects of unilateral versus bilateral motor training on upper limb function in adults with chronic stroke:a systematic review[J]. J Stroke Cerebrovasc Dis, 2021, 30:105617. [29] Toth A, Fazekas G, Arz G, Jurak M, Horvath M. Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB:report of the first clinical test and the follow-up system improvement[C]. 9th International Conference on Rehabilitation Robotics, Chicago, United states, 2005. New York:IEEE, 2005:127-130[2022-09-30]. https://ieeexplore.ieee.org/document/1501067. [30] Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Trans Mechatron, 2007, 12:408-417. [31] Morone G, Palomba A, Martino Cinnera A, Agostini M, Aprile I, Arienti C, Paci M, Casanova E, Marino D, LA Rosa G, Bressi F, Sterzi S, Gandolfi M, Giansanti D, Perrero L, Battistini A, Miccinilli S, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Straudi S; "CICERONE" Italian Consensus Conference on Robotic in Neurorehabilitation. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke[J]. Eur J Phys Rehabil Med, 2021, 57:238-245. [32] Prattichizzo D, Malvezzi M, Hussain I, Salvietti G. The sixth-finger:a modular extra-finger to enhance human hand capabilities[C]. The 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 2014. New York:IEEE, 2014:993-998[2022-09-30]. https://ieeexplore.ieee.org/document/6926382. [33] Jing HW, Zhu YH, Zhao SK, Zhang QH, Zhao J. Research status and development trend of supernumerary robotic limbs[J]. Ji Xie Gong Cheng Xue Bao, 2020, 56:1-9. 荆泓玮, 朱延河, 赵思恺, 张清华, 赵杰. 外肢体机器人研究现状及发展趋势[J]. 机械工程学报, 2020, 56:1-9. [34] Gan Q, Harris CJ. A hybrid learning scheme combining EM and MASMOD algorithms for fuzzy local linearization modeling[J]. IEEE Trans Neural Netw, 2001, 12:43-53. [35] Carter-Davies D, Chen JS, Chen F, Li M, Yang CG. Mechatronic design and control of a 3D printed low cost robotic upper limb[C]. 2018 11th International Workshop on Human Friendly Robotics (HFR), Shenzhen, China, 2018. New York:IEEE, 2018:1-6[2022-09-30]. https://ieeexplore.ieee.org/abstract/document/8633519. [36] Hussain I, Salvietti G, Spagnoletti G, Prattichizzo D. The soft-sixthfinger:a wearable EMG controlled robotic extra-finger for grasp compensation in chronic stroke patients[J]. IEEE Robot Auto Lett, 2016, 1:57-61. [37] Hussain I, Spagnoletti G, Salvietti G, Prattichizzo D. An EMG interface for the control of motion and compliance of a supernumerary robotic finger[J]. Front Neurorobot, 2016, 10:18. [38] Rossi S, Salvietti G, Neri F, Romanella SM, Cinti A, Sinigaglia C, Ulivelli M, Lisini Baldi T, Santarnecchi E, Prattichizzo D. Emerging of new bioartificial corticospinal motor synergies using a robotic additional thumb[J]. Sci Rep, 2021, 11:18487. [39] Liu Y, Huang S, Wang Z, Ji F, Ming D. Functional reorganization after four-week brain-computer interface-controlled supernumerary robotic finger training:a pilot study of longitudinal resting-state fMRI[J]. Front Neurosci, 2022, 15:766648. [40] Liu Y, Wang Z, Huang S, Wang W, Ming D. EEG characteristic investigation of the sixth-finger motor imagery and optimal channel selection for classification[J]. J Neural Eng, 2022, 19:30. [41] Eraifej J, Clark W, France B, Desando S, Moore D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function:a systematic review and meta-analysis[J]. Syst Rev, 2017, 6:40. [42] Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke:a review[J]. Biomed Eng Online, 2020, 19:34. [43] Kapadia N, Moineau B, Popovic MR. Functional electrical stimulation therapy for retraining reaching and grasping after spinal cord injury and stroke[J]. Front Neurosci, 2020, 14:718. [44] Lan Y, Yao J, Dewald JP. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011:4136-4139. [45] Knutson JS, Gunzler DD, Wilson RD, Chae J. Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis:a randomized trial[J]. Stroke, 2016, 47:2596-2602. [46] Guggenberger R, Heringhaus M, Gharabaghi A. Brain-machine neurofeedback:robotics or electrical stimulation[J]? Front Bioeng Biotechnol, 2020, 8:639. [47] Sousa ASP, Moreira J, Silva C, Mesquita I, Macedo R, Silva A, Santos R. Usability of functional electrical stimulation in upper limb rehabilitation in post-stroke patients:a narrative review[J]. Sensors (Basel), 2022, 22:1409. [48] Karamians R, Proffitt R, Kline D, Gauthier LV. Effectiveness of virtual reality-and gaming-based interventions for upper extremity rehabilitation poststroke:a meta-analysis[J]. Arch Phys Med Rehabil, 2020, 101:885-896. [49] Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for Adult Stroke Rehabilitation and Recovery:a Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2016, 47:e98-169. [50] Ahn S, Hwang S. Virtual rehabilitation of upper extremity function and independence for stoke:a meta-analysis[J]. J Exerc Rehabil, 2019, 15:358-369. [51] Lee HS, Park YJ, Park SW. The effects of virtual reality training on function in chronic stroke patients:a systematic review and meta-analysis[J]. Biomed Res Int, 2019:ID7595639. [52] Weber LM, Nilsen DM, Gillen G, Yoon J, Stein J. Immersive virtual reality mirror therapy for upper limb recovery after stroke:a pilot study[J]. Am J Phys Med Rehabil, 2019, 98:783-788. [53] Choi YH, Paik NJ. Mobile game-based virtual reality program for upper extremity stroke rehabilitation[J]. J Vis Exp, 2018, (133):56241. |