[1] Dorsey ER, Bloem BR. The Parkinson pandemic:a call to action[J]. JAMA Neurol, 2018, 75:9-10. [2] Zesiewicz TA. Parkinson disease[J]. Continuum (Minneap Minn), 2019, 25:896-918. [3] Franzini A, Moosa S, Servello D, Small I, DiMeco F, Xu Z, Elias WJ, Franzini A, Prada F. Ablative brain surgery:an overview[J]. Int J Hyperthermia, 2019, 36:64-80. [4] García-Gomar MG, Concha L, Soto-Abraham J, Tournier JD, Aguado-Carrillo G, Velasco-Campos F. Long-term improvement of Parkinson disease motor symptoms derived from lesions of prelemniscal fiber tract components[J]. Oper Neurosurg (Hagerstown), 2020, 19:539-550. [5] Castro G, Carrillo-Ruiz JD, Salcido V, Soto J, García-Gomar G, Velasco AL, Velasco F. Optimizing prelemniscal radiations as a target for motor symptoms in Parkinson's disease treatment[J].Stereotact Funct Neurosurg, 2015, 93:282-291. [6] Stern MA, Isbaine F, Qiu D, Riley JP, Boulis NM, Gross RE. Radiofrequency ablation through previously effective deep brain stimulation leads for Parkinson disease:a retrospective series[J]. World Neurosurg, 2020, 144:e750-765. [7] Horisawa S, Fukui A, Nonaka T, Kawamata T, Taira T. Radiofrequency ablation for movement disorders:risk factors for intracerebral hemorrhage, a retrospective analysis[J]. Oper Neurosurg (Hagerstown), 2021, 21:143-149. [8] Harris M, Steele J, Williams R, Pinkston J, Zweig R, Wilden JA. MRI-guided laser interstitial thermal thalamotomy for medically intractable tremor disorders[J]. Mov Disord, 2019, 34:124-129. [9] Stavarache MA, Chazen JL, Kaplitt MG. Foundations of magnetic resonance-guided focused ultrasonography[J]. World Neurosurg, 2021, 145:567-573. [10] LeWitt PA, Lipsman N, Kordower JH. Focused ultrasound opening of the blood-brain barrier for treatment of Parkinson's disease[J]. Mov Disord, 2019, 34:1274-1278. [11] Yamamoto K, Ito H, Fukutake S, Odo T, Kamei T, Yamaguchi T, Taira T. Focused ultrasound thalamotomy for tremor-dominant Parkinson's disease:a prospective 1-year follow-up study[J]. Neurol Med Chir (Tokyo), 2021, 61:414-421. [12] Zong R, Li XM, He JF, Zhang DK, Yu XG, Ling ZP, Zhao JY, Ma L, Lou X, Pan LS. Preliminary observation of transcranial MR-guided focused ultrasound in the treatment of tremor related to Parkinson's disease[J]. Zhonghua Shen Jing Wai Ke Za Zhi, 2020, 36:1130-1134.[宗睿,李雪梅,何建风,张德康,余新光,凌至培,赵珺燕,马林,娄昕,潘隆盛.经颅磁共振引导超声聚焦治疗帕金森病震颤的初步观察[J].中华神经外科杂志, 2020, 36:1130-1134.] [13] Eisenberg HM, Krishna V, Elias WJ, Cosgrove GR, Gandhi D, Aldrich CE, Fishman PS. MR-guided focused ultrasound pallidotomy for Parkinson's disease:safety and feasibility[J]. J Neurosurg, 2020, 27:1-7. [14] Gallay MN, Moser D, Rossi F, Magara AE, Strasser M, Bühler R, Kowalski M, Pourtehrani P, Dragalina C, Federau C, Jeanmonod D. MRgFUS pallidothalamic tractotomy for chronic therapy-resistant Parkinson's disease in 51 consecutive patients:single center experience[J]. Front Surg, 2020, 6:76. [15] Martínez-Fernández R, Má?ez-Miró JU, Rodríguez-Rojas R, Del álamo M, Shah BB, Hernández-Fernández F, Pineda-Pardo JA, Monje MHG, Fernández-Rodríguez B, Sperling SA, Mata-Marín D, Guida P, Alonso-Frech F, Obeso I, Gasca-Salas C, Vela-Desojo L, Elias WJ, Obeso JA. Randomized trial of focused ultrasound subthalamotomy for Parkinson's disease[J]. N Engl J Med, 2020, 383:2501-2513. [16] Alterman RL, Schulder M. Letter randomized trial of unilateral focused ultrasound subthalamotomy for Parkinson disease[J].Neurosurgery, 2021, 89:E95-96. [17] Karakatsani ME, Wang S, Samiotaki G, Kugelman T, Olumolade OO, Acosta C, Sun T, Han Y, Kamimura HAS, Jackson-Lewis V, Przedborski S, Konofagou E. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease[J]. J Control Release, 2019, 303:289-301. [18] Karakatsani ME, Blesa J, Konofagou EE. Blood-brain barrier opening with focused ultrasound in experimental models of Parkinson's disease[J]. Mov Disord, 2019, 34:1252-1261. [19] Ochiai T. Gamma knife thalamotomy for a medically refractory tremors:longitudinal evaluation of clinical effects and MRI response patterns[J]. Acta Neurochir Suppl, 2021, 128:127-132. [20] Chiken S, Nambu A. Mechanism of deep brain stimulation:inhibition, excitation, or disruption[J]?Neuroscientist, 2016, 22:313-322. [21] Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New frontiers for deep brain stimulation:directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics[J]. Front Neurol, 2021, 12:694747. [22] Patel B, Chiu S, Wong JK, Patterson A, Deeb W, Burns M, Zeilman P, Wagle-Shukla A, Almeida L, Okun MS, Ramirez-Zamora A. Deep brain stimulation programming strategies:segmented leads, independent current sources, and future technology[J]. Expert Rev Med Devices, 2021, 18:875-891. [23] Weiss D, Pal GD. Validating the targets for neurostimulation in essential tremor[J]. Neurology, 2018, 91:247-248. [24] Temel Y, Visser-Vandewalle V. Targets for deep brain stimulation in Parkinson's disease[J]. Expert Opin Ther Targets, 2006, 10:355-362. [25] Ossowska K. Zona incerta as a therapeutic target in Parkinson's disease[J]. J Neurol, 2020, 267:591-606. [26] Yu K, Ren Z, Guo S, Li J, Li Y. Effects of pedunculopontine nucleus deep brain stimulation on gait disorders in Parkinson's disease:a meta-analysis of the literature[J]. Clin Neurol Neurosurg, 2020, 198:106108. [27] Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, W?chter T, Krüger R. Nigral stimulation for resistant axial motor impairment in Parkinson's disease:a randomized controlled trial[J]?Brain, 2013, 136(Pt 7):2098-2108. [28] Valldeoriola F, Mu?oz E, Rumià J, Roldán P, Cámara A, Compta Y, Martí MJ, Tolosa E. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson's disease:a pilot study[J]. Parkinsonism Relat Disord, 2019, 60:153-157. [29] Hidding U, Gulberti A, Pflug C, Choe C, Horn A, Prilop L, Braa? H, Fründt O, Buhmann C, Weiss D, Westphal M, Engel AK, Gerloff C, K?ppen JA, Hamel W, Moll CKE, P?tter-Nerger M. Modulation of specific components of sleep disturbances by simultaneous subthalamic and nigral stimulation in Parkinson's disease[J]. Parkinsonism Relat Disord, 2019, 62:141-147. [30] Underwood CF, Parr-Brownlie LC. Primary motor cortex in Parkinson's disease:functional changes and opportunities for neurostimulation[J]. Neurobiol Dis, 2021, 147:105159. [31] Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease[J]. Brain, 2007, 130(Pt 6):1596-1607. [32] Pflug C, Nienstedt JC, Gulberti A, Müller F, Vettorazzi E, Koseki JC, Niessen A, Flügel T, Hidding U, Buhmann C, Weiss D, Gerloff C, Hamel W, Moll CKE, P?tter-Nerger M. Impact of simultaneous subthalamic and nigral stimulation on dysphagia in Parkinson's disease[J]. Ann Clin Transl Neurol, 2020, 7:628-638. [33] Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation:current status and future directions[J]. Nat Rev Neurol, 2021, 17:75-87. [34] Steigerwald F, Matthies C, Volkmann J. Directional deep brain stimulation[J]. Neurotherapeutics, 2019, 16:100-104. [35] Fricke P, Nickl R, Breun M, Volkmann J, Kirsch D, Ernestus RI, Steigerwald F, Matthies C. Directional leads for deep brain stimulation:technical notes and experiences[J]. Stereotact Funct Neurosurg, 2021, 99:305-312. [36] Ten Brinke TR, Odekerken VJJ, Dijk JM, van den Munckhof P, Schuurman PR, de Bie RMA. Directional deep brain stimulation:first experiences in centers across the globe[J].Brain Stimul, 2018, 11:949-950. [37] Nguyen TAK, Nowacki A, Debove I, Petermann K, Tinkhauser G, Wiest R, Schüpbach M, Krack P, Pollo C. Directional stimulation of subthalamic nucleus sweet spot predicts clinical efficacy:proof of concept[J]. Brain Stimul, 2019, 12:1127-1134. [38] Dembek TA, Hoevels M, Hellerbach A, Horn A, Petry-Schmelzer JN, Borggrefe J, Wirths J, Dafsari HS, Barbe MT, Visser-Vandewalle V, Treuer H. Directional DBS leads show large deviations from their intended implantation orientation[J].Parkinsonism Relat Disord, 2019, 67:117-121. [39] Vitek JL, Jain R, Chen L, Tr?ster AI, Schrock LE, House PA, Giroux ML, Hebb AO, Farris SM, Whiting DM, Leichliter TA, Ostrem JL, San Luciano M, Galifianakis N, Verhagen Metman L, Sani S, Karl JA, Siddiqui MS, Tatter SB, Ul Haq I, Machado AG, Gostkowski M, Tagliati M, Mamelak AN, Okun MS, Foote KD, Moguel-Cobos G, Ponce FA, Pahwa R, Nazzaro JM, Buetefisch CM, Gross RE, Luca CC, Jagid JR, Revuelta GJ, Takacs I, Pourfar MH, Mogilner AY, Duker AP, Mandybur GT, Rosenow JM, Cooper SE, Park MC, Khandhar SM, Sedrak M, Phibbs FT, Pilitsis JG, Uitti RJ, Starr PA. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson's disease (INTREPID):a multicentre, double-blind, randomised, sham-controlled study[J]. Lancet Neurol, 2020, 19:491-501. [40] Kromer JA, Khaledi-Nasab A, Tass PA. Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation[J]. Chaos, 2020, 30:083134. [41] Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine non-human primate model of parkinsonism[J]. Brain Stimul, 2016, 9:609-617. [42] Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, Silchenko A, Volkmann J, Deuschl G, Meissner WG, Maarouf M, Sturm V, Freund HJ, Tass PA. Coordinated reset neuromodulation for Parkinson's disease:proof-of-concept study[J].Mov Disord, 2014, 29:1679-1684. [43] Yin Z, Zhu G, Zhao B, Bai Y, Jiang Y, Neumann WJ, Kühn AA, Zhang J. Local field potentials in Parkinson's disease:a frequency-based review[J]. Neurobiol Dis, 2021, 155:105372. [44] Beudel M, Oswal A, Jha A, Foltynie T, Zrinzo L, Hariz M, Limousin P, Litvak V. Oscillatory beta power correlates with akinesia-rigidity in the parkinsonian subthalamic nucleus[J].Mov Disord, 2017, 32:174-175. [45] Pi?a-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM, Little S, Brown P, Beudel M. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J].Brain Stimul, 2020, 13:1507-1516. [46] Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson's disease[J]. Mov Disord, 2018, 33:1834-1843. [47] Horn A, Neumann WJ, Degen K, Schneider GH, Kühn AA. Toward an electrophysiological "sweet spot" for deep brain stimulation in the subthalamic nucleus[J]. Hum Brain Mapp, 2017, 38:3377-3390. [48] Giannicola G, Rosa M, Servello D, Menghetti C, Carrabba G, Pacchetti C, Zangaglia R, Cogiamanian F, Scelzo E, Marceglia S, Rossi L, Priori A. Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson's disease[J].Exp Neurol, 2012, 237:312-317. [49] Ramirez de Noriega F, Eitan R, Marmor O, Lavi A, Linetzky E, Bergman H, Israel Z. Constant current versus constant voltage subthalamic nucleus deep brain stimulation in Parkinson's disease[J]. Stereotact Funct Neurosurg, 2015, 93:114-121. [50] Kirsch AD, Hassin-Baer S, Matthies C, Volkmann J, Steigerwald F. Anodic versus cathodic neurostimulation of the subthalamic nucleus:a randomized-controlled study of acute clinical effects[J]. Parkinsonism Relat Disord, 2018, 55:61-67. [51] Steigerwald F, Timmermann L, Kühn A, Schnitzler A, Reich MM, Kirsch AD, Barbe MT, Visser-Vandewalle V, Hübl J, van Riesen C, Groiss SJ, Moldovan AS, Lin S, Carcieri S, Manola L, Volkmann J. Pulse duration settings in subthalamic stimulation for Parkinson's disease[J]. Mov Disord, 2018, 33:165-169. [52] Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S, Nickl R, Matthies C, McIntyre CC, Volkmann J. Short pulse width widens the therapeutic window of subthalamic neurostimulation[J]. Ann Clin Transl Neurol, 2015, 2:427-432. [53] Dayal V, De Roquemaurel A, Grover T, Ferreira F, Salazar M, Milabo C, Candelario-McKeown J, Zrinzo L, Akram H, Limousin P, Foltynie T. Novel programming features help alleviate subthalamic nucleus stimulation:induced side effects[J]. Mov Disord, 2020, 35:2261-2269. [54] Horn MA, Gulberti A, Gülke E, Buhmann C, Gerloff C, Moll CKE, Hamel W, Volkmann J, P?tter-Nerger M. A new stimulation mode for deep brain stimulation in Parkinson's disease:theta burst stimulation[J]. Mov Disord, 2020, 35:1471-1475. [55] Karl JA, Ouyang B, Goetz S, Metman LV. A novel DBS paradigm for axial features in Parkinson's disease:a randomized crossover study[J]. Mov Disord, 2020, 35:1369-1378. [56] Jia F, Wagle Shukla A, Hu W, Almeida L, Holanda V, Zhang J, Meng F, Okun MS, Li L. Deep brain stimulation at variable frequency to improve motor outcomes in Parkinson's disease[J]. Mov Disord Clin Pract, 2018, 5:538-541. [57] Zhang C, Pan Y, Zhou H, Xie Q, Sun B, Niu CM, Li D. Variable high-frequency deep brain stimulation of the subthalamic nucleus for speech disorders in Parkinson's disease:a case report[J]. Front Neurol, 2019, 10:379. [58] Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease:introduction of current issues and perspectives[J]. Rev Neurol (Paris), 2020, 176:770-779. [59] DeGiorgio CM, Shewmon A, Murray D, Whitehurst T. Pilot study of trigeminal nerve stimulation (TNS) for epilepsy:a proofof-concept trial[J]. Epilepsia, 2006, 47:1213-1215. [60] George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC. Vagus nerve stimulation:a new tool for brain research and therapy[J]. Biol Psychiatry, 2000, 47:287-295. [61] Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MA. Spinal cord stimulation restores locomotion in animal models of Parkinson's disease[J]. Science, 2009, 323:1578-1582. [62] Garcia BB, Junior ER, Araújo MFP, Simplício H. History of and insights into spinal cord stimulation in Parkinson disease[J].Neurorehabil Neural Repair, 2020, 34:967-978. [63] Thevathasan W, Mazzone P, Jha A, Djamshidian A, Dileone M, Di Lazzaro V, Brown P. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease[J].Neurology, 2010, 74:1325-1327. [64] Fuentes R, Petersson P, Nicolelis MA. Restoration of locomotive function in Parkinson's disease by spinal cord stimulation:mechanistic approach[J]. Eur J Neurosci, 2010, 32:1100-1108. [65] Nishioka K, Nakajima M. Beneficial therapeutic effects of spinal cord stimulation in advanced cases of Parkinson's disease with intractable chronic pain:a case series[J].Neuromodulation, 2015, 18:751-753. [66] Furusawa Y, Matsui A, Kobayashi-Noami K, Kojima Y, Tsubouchi A, Todoroki D, Abe K, Ishihara T, Nishikawa N, Sakamoto T, Takahashi Y. Burst spinal cord stimulation for pain and motor function in Parkinson's disease:a case series[J].Clin Park Relat Disord, 2020, 3:100043. [67] Samotus O, Parrent A, Jog M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson's disease patients[J]. Brain Stimul, 2020, 13:1196-1197. [68] Merola A, Van Laar A, Lonser R, Bankiewicz K. Gene therapy for Parkinson's disease:contemporary practice and emerging concepts[J]. Expert Rev Neurother, 2020, 20:577-590. [69] van Horne CG, Quintero JE, Slevin JT, Anderson-Mooney A, Gurwell JA, Welleford AS, Lamm JR, Wagner RP, Gerhardt GA. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinson's disease during deep brain stimulation surgery:1-year follow-up study of safety, feasibility, and clinical outcome[J]. J Neurosurg, 2018, 129:1550-1561. |