[1] Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders:past, present, and future[J]. J Magn Reson Imaging, 2007, 25:433-440.
[2] Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy:distribution of disease activity and correlation with clinical assessments[J]. Radiology, 2010, 255:899-908.
[3] Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder R, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M. Distinct muscle imaging patterns in myofibrillar myopathies[J]. Neurology, 2008, 71:758-765.
[4] Carlo B, Roberta P, Roberto S, Marina F, Corrado A. Limb-girdle muscular dystrophies type 2A and 2B:clinical and radiological aspects[J]. Basic Appl Myol, 2006, 16:17-25.
[5] Barp A, Laforet P, Bello L, Tasca G, Vissing J, Monforte M, Ricci E, Choumert A, Stojkovic T, Malfatti E, Pegoraro E, Semplicini C, Stramare R, Scheidegger O, Haberlova J, Straub V, Marini-Bettolo C, Løkken N, Diaz-Manera J, Urtizberea JA, Mercuri E, Kyn?l M, Walter MC, Carlier RY. European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A)[J]. J Neurol, 2020, 267:45-56.
[6] Dixon WT. Simple proton spectroscopic imaging[J]. Radiology, 1984, 153:189-194.
[7] Grimm A, Meyer H, Nickel MD, Nittka M, Raithel E, Chaudry O, Friedberger A, Uder M, Kemmler W, Quick HH, Engelke K. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification[J]. Eur J Radiol, 2018, 103:57-64.
[8] Naarding KJ, Reyngoudt H, van Zwet EW, Hooijmans MT, Tian C, Rybalsky I, Shellenbarger KC, Le Louër J, Wong BL, Carlier PG, Kan HE, Niks EH. MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy[J]. Neurology, 2020, 94:e1386-1394.
[9] Fischmann A, Hafner P, Fasler S, Gloor M, Bieri O, Studler U, Fischer D. Quantitative MRI can detect subclinical disease progression in muscular dystrophy[J]. J Neurol, 2012, 259:1648-1654.
[10] Willis TA, Hollingsworth KG, Coombs A, Sveen ML, Andersen S, Stojkovic T, Eagle M, Mayhew A, de Sousa PL, Dewar L, Morrow JM, Sinclair CD, Thornton JS, Bushby K, Lochmuller H, Hanna MG, Hogrel JY, Carlier PG, Vissing J, Straub V. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I:a multinational cross-sectional study[J]. PLoS One, 2014, 9:e90377.
[11] Murphy AP, Morrow J, Dahlqvist JR, Stojkovic T, Willis TA, Sinclair CDJ, Wastling S, Yousry T, Hanna MS, James MK, Mayhew A, Eagle M, Lee LE, Hogrel JY, Carlier PG, Thornton JS, Vissing J, Hollingsworth KG, Straub V. Natural history of limb girdle muscular dystrophy R9 over 6 years:searching for trial endpoints[J]. Ann Clin Transl Neurol, 2019, 6:1033-1045.
[12] Nuñez-Peralta C, Alonso-Pérez J, Llauger J, Segovia S, Montesinos P, Belmonte I, Pedrosa I, Montiel E, Alonso-Jiménez A, Sánchez-González J, Martínez-Noguera A, Illa I, Díaz-Manera J. Follow-up of late-onset Pompe disease patients with muscle magnetic resonance imaging reveals increase in fat replacement in skeletal muscles[J]. J Cachexia Sarcopenia Muscle, 2020, 11:1032-1046.
[13] Johnston JH, Kim HK, Merrow AC, Laor T, Serai S, Horn PS, Kim DH, Wong BL. Quantitative skeletal muscle MRI:part 1, derived T2 fat map in differentiation between boys with Duchenne muscular dystrophy and healthy boys[J]. AJR Am J Roentgenol, 2015, 205:W207-215.
[14] Forbes SC, Arora H, Willcocks RJ, Triplett WT, Rooney WD, Barnard AM, Alabasi U, Wang DJ, Lott DJ, Senesac CR, Harrington AT, Finanger EL, Tennekoon GI, Brandsema J, Daniels MJ, Sweeney HL, Walter GA, Vandenborne K. Upper and lower extremities in Duchenne muscular dystrophy evaluated with quantitative MRI and proton MR spectroscopy in a multicenter cohort[J]. Radiology, 2020, 295:616-625.
[15] Yin L, Xie ZY, Xu HY, Zheng SS, Wang ZX, Xiao JX, Yuan Y. T2 mapping and fat quantification of thigh muscles in children with Duchenne muscular dystrophy[J]. Curr Med Sci, 2019, 39:138-145.
[16] Wokke BH, Van Den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE. T2 relaxation times are increased in Skeletal muscle of DMD but not BMD patients[J]. Muscle Nerve, 2016, 53:38-43.
[17] Greulich S, Mayr A, Kitterer D, Latus J, Henes J, Steubing H, Kaesemann P, Patrascu A, Greiser A, Groeninger S, Braun N, Alscher MD, Sechtem U, Mahrholdt H. T1 and T2 mapping for evaluation of myocardial involvement in patients with ANCA-associated vasculitides[J]. J Cardiovasc Magn Reson, 2017, 19:6.
[18] Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume:a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19:75.
[19] Turkbey EB, Gai N, Lima JA, van der Geest RJ, Wagner KR, Tomaselli GF, Bluemke DA, Nazarian S. Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging[J]. Heart Rhythm, 2012, 9:1691-1697.
[20] Marty B, Coppa B, Carlier PG. Monitoring skeletal muscle chronic fatty degenerations with fast T1-mapping[J]. Eur Radiol, 2018, 28:4662-4668.
[21] Winters KV, Reynaud O, Novikov DS, Fieremans E, Kim SG. Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice[J]. Magn Reson Med, 2018, 80:2094-2108.
[22] Ponrartana S, Ramos-Platt L, Wren TA, Hu HH, Perkins TG, Chia JM, Gilsanz V. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy:preliminary study[J]. Pediatr Radiol, 2015, 45:582-589.
[23] Damon BM, Froeling M, Buck AK, Oudeman J, Ding Z, Nederveen AJ, Bush EC, Strijkers GJ. Skeletal muscle diffusion tensor-MRI fiber tracking:rationale, data acquisition and analysis methods, applications and future directions[J]. NMR Biomed, 2017, 30:10.
[24] Keller S, Wang ZJ, Aigner A, Kim AC, Golsari A, Kooijman H, Adam G, Yamamura J. Diffusion tensor imaging of dystrophic skeletal muscle:comparison of two segmentation methods adapted to chemical-shift-encoded water-fat MRI[J]. Clin Neuroradiol, 2019, 29:231-242.
[25] Paschoal AM, Leoni RF, Dos Santos AC, Paiva FF. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases[J]. Neuroimage Clin, 2018, 20:705-714.
[26] Federau C, Kroismayr D, Dyer L, Farshad M, Pfirrmann C. Demonstration of asymmetric muscle perfusion of the back after exercise in patients with adolescent idiopathic scoliosis using intravoxel incoherent motion (IVIM) MRI[J]. NMR Biomed, 2020, 33:e4194.
[27] Adelnia F, Shardell M, Bergeron CM, Fishbein KW, Spencer RG, Ferrucci L, Reiter DA. Diffusion-weighted MRI with intravoxel incoherent motion modeling for assessment of muscle perfusion in the thigh during post-exercise hyperemia in younger and older adults[J]. NMR Biomed, 2019, 32:e4072.
[28] Sigmund EE, Baete SH, Luo T, Patel K, Wang D, Rossi I, Duarte A, Bruno M, Mossa D, Femia A, Ramachandran S, Stoffel D, Babb JS, Franks AG, Bencardino J. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI[J]. Eur Radiol, 2018, 28:5304-5315.
[29] Ran J, Yin C, Liu C, Li Y, Hou B, Morelli JN, Dai B, Li X. The diagnostic value of MR IVIM and T2 mapping in differentiating autoimmune myositis from muscular dystrophy[J]. Acad Radiol, 2021, 28:e182-188.
[30] Hsieh TJ, Jaw TS, Chuang HY, Jong YJ, Liu GC, Li CW. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy[J]. J Comput Assist Tomogr, 2009, 33:150-154.
[31] Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang DJ, Arpan I, Arora H, Senesac C, Lott DJ, Tennekoon G, Finkel R, Russman BS, Finanger EL, Chakraborty S, O'Brien E, Moloney B, Barnard A, Sweeney HL, Daniels MJ, Walter GA, Vandenborne K. Modeling disease trajectory in Duchenne muscular dystrophy[J]. Neurology, 2020, 94:e1622-1633.
[32] Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JAL, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovi? L, Kemp GJ; Experts' Working Group on 31P MR Spectroscopy of Skeletal Muscle. 31P magnetic resonance spectroscopy in skeletal muscle:experts' consensus recommendations[J]. NMR Biomed, 2020.[Epub ahead of print]
[33] Hooijmans MT, Doorenweerd N, Baligand C, Verschuuren JJGM, Ronen I, Niks EH, Webb AG, Kan HE. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients:24-month follow-up[J]. PLoS One, 2017, 12:e0182086.
[34] Myers JH, Denman K, DuPont C, Hawash AA, Novak KR, Koesters A, Grabner M, Dayal A, Voss AA, Rich MM. The mechanism underlying transient weakness in myotonia congenita[J]. Elife, 2021, 10:e65691.
[35] Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F. Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy[J]. Neurology, 2011, 77:2017-2024.
[36] Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA. 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies[J]. Invest Radiol, 2011, 46:759-766.
[37] Wary C, Laforêt P, Eymard B, Fardeau M, Leroy-Willig A, Bassez G, Leroy JP, Caillaud C, Poenaru L, Carlier PG. Evaluation of muscle glycogen content by 13C NMR spectroscopy in adult-onset acid maltase deficiency[J]. Neuromuscul Disord, 2003, 13:545-553.
[38] Nuñez-Peralta C, Montesinos P, Alonso-Jiménez A, Alonso-Pérez J, Reyes-Leiva D, Sánchez-González J, Llauger-Roselló J, Segovia S, Belmonte I, Pedrosa I, Martínez-Noguera A, Matellini-Mosca B, Walter G, Díaz-Manera J. Magnetization transfer ratio in lower limbs of late onset pompe patients correlates with intramuscular fat fraction and muscle function tests[J]. Front Neurol, 2021, 12:634766.
[39] Koga A, Itoigawa Y, Suga M, Morikawa D, Uehara H, Maruyama Y, Kaneko K. Stiffness change of the supraspinatus muscle can be detected by magnetic resonance elastography[J]. Magn Reson Imaging, 2021, 80:9-13.
[40] Pichiecchio A, Alessandrino F, Bortolotto C, Cerica A, Rosti C, Raciti MV, Rossi M, Berardinelli A, Baranello G, Bastianello S, Calliada F. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2018, 28:476-483.
[41] Huang YL, Zhou JL, Jiang YM, Zhang ZG, Zhao W, Han D, He B. Assessment of lumbar paraspinal muscle activation using fMRI BOLD imaging and T2 mapping[J]. Quant Imaging Med Surg, 2020, 10:106-115.
[42] Lopez C, Taivassalo T, Berru MG, Saavedra A, Rasmussen HC, Batra A, Arora H, Roetzheim AM, Walter GA, Vandenborne K, Forbes SC. Post-contractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy[J]. J Appl Physiol (1985), 2021.[Epub ahead of print] |