[1] DeBose-Boyd RA. Significance and regulation of lipid metabolism[J]. Semin Cell Dev Biol, 2018, 81:97.
[2] Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintão ECR. Cholesterol metabolism in mice models of genetic hypercholesterolemia[J]. J Physiol Biochem, 2020, 76:437-443.
[3] Schade DS, Shey L, Eaton RP. Cholesterol review:a metabolically important molecule[J]. Endocr Pract, 2020, 26:1514-1523.
[4] Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol biosynthesis and uptake in developing neurons[J]. ACS Chem Neurosci, 2019, 10:3671-3681.
[5] Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57:178-201.
[6] Cartocci V, Servadio M, Trezza V, Pallottini V. Can cholesterol metabolism modulation affect brain function and behavior[J]? J Cell Physiol, 2017, 232:281-286.
[7] Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes[J]. Prog Lipid Res, 2011, 50:357-371.
[8] Xiao M, Xiao ZJ, Yang B, Lan Z, Fang F. Blood-brain barrier:more contributor to disruption of central nervous system homeostasis than victim in neurological disorders[J]. Front Neurosci, 2020, 14:764.
[9] Flowers SA, Rebeck GW. APOE in the normal brain[J]. Neurobiol Dis, 2020, 136:104724.
[10] An Y, Zhang DD, Yu HL, Ma WW, Lu YH, Liu QR, Xiao R. 27-Hydroxycholesterol regulates cholesterol synthesis and transport in C6 glioma cells[J]. Neurotoxicology, 2017, 59:88-97.
[11] Wang Y, Zhang X, Wang T, Liu W, Wang L, Hao L, Ju M, Xiao R. 27-Hydroxycholesterol promotes the transfer of astrocyte-derived cholesterol to neurons in Co-cultured SH-SY5Y cells and C6 cells[J]. Front Cell Dev Biol, 2020, 8:580599.
[12] Petrov AM, Pikuleva IA. Cholesterol 24-Hydroxylation by CYP46A1:benefits of modulation for brain diseases[J]. Neurotherapeutics, 2019, 16:635-648.
[13] Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease:potential novel targets for treatment[J]. J Steroid Biochem Mol Biol, 2019, 190:104-114.
[14] Lu F, Zhu J, Guo S, Wong BJ, Chehab FF, Ferriero DM, Jiang X. Upregulation of cholesterol 24-hydroxylase following hypoxia-ischemia in neonatal mouse brain[J]. Pediatr Res, 2018, 83:1218-1227.
[15] Azizidoost S, Nazeri Z, Mohammadi A, Mohammadzadeh G, Cheraghzadeh M, Jafari A, Kheirollah A. Effect of hydroalcoholic ginger extract on brain HMG-CoA reductase and CYP46A1 levels in streptozotocin-induced diabetic rats[J]. Avicenna J Med Biotechnol, 2019, 11:234-238.
[16] Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke[J]. Nat Rev Neurosci, 2003, 4:399-415.
[17] Huang L, Nakamura Y, Lo EH, Hayakawa K. Astrocyte signaling in the neurovascular unit after central nervous system injury[J]. Int J Mol Sci, 2019, 20:282.
[18] Czuba E, Steliga A, Lietzau G, Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions[J]. Metab Brain Dis, 2017, 32:935-948.
[19] Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers:evans blue, sodium fluorescein, and horseradish peroxidase[J]. Methods Mol Biol, 2011, 763:369-382.
[20] de Oliveira J, Engel DF, de Paula GC, Dos Santos DB, Lopes JB, Farina M, Moreira ELG, de Bem AF. High cholesterol diet exacerbates blood-brain barrier disruption in LDLr-/- mice:impact on cognitive function[J]. J Alzheimers Dis, 2020, 78:97-115.
[21] Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood-brain barrier:far more than claudin-5[J]. Cell Mol Life Sci, 2019, 76:1987-2002.
[22] Rom S, Heldt NA, Gajghate S, Seliga A, Reichenbach NL, Persidsky Y. Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles[J]. Sci Rep, 2020, 10:7274.
[23] Luo J, Jiang LY, Yang H, Song BL. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites[J]. Trends Biochem Sci, 2019, 44:273-292.
[24] Verkman AS, Smith AJ, Phuan PW, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders[J]. Expert Opin Ther Targets, 2017, 21:1161-1170.
[25] Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease[J]. Cells, 2019, 8:90.
[26] Hawkes CA, Gentleman SM, Nicoll JA, Carare RO. Prenatal high-fat diet alters the cerebrovasculature and clearance of β-amyloid in adult offspring[J]. J Pathol, 2015, 235:619-631.
[27] Rosu GC, Catalin B, Balseanu TA, Laurentiu M, Claudiu M, Kumar-Singh S, Daniel P. Inhibition of aquaporin 4 decreases amyloid Aβ40 drainage around cerebral vessels[J]. Mol Neurobiol, 2020, 57:4720-4734.
[28] Chen YL, Wang LM, Chen Y, Gao JY, Marshall C, Cai ZY, Hu G, Xiao M. Changes in astrocyte functional markers and β-amyloid metabolism-related proteins in the early stages of hypercholesterolemia[J]. Neuroscience, 2016, 316:178-191.
[29] Fanaee-Danesh E, Gali CC, Tadic J, Zandl-Lang M, Carmen Kober A, Agujetas VR, de Dios C, Tam-Amersdorfer C, Stracke A, Albrecher NM, Manavalan APC, Reiter M, Sun Y, Colell A, Madeo F, Malle E, Panzenboeck U. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer's disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865:2224-2245.
[30] Chen T, Yuan H, Sun YB, Song YC, Lu M, Ni X, Han X. Metabolomics study of the prefrontal cortex in a rat model of attention deficit hyperactivity disorder reveals the association between cholesterol metabolism disorder and hyperactive behavior[J]. Biochem Biophys Res Commun, 2020, 523:315-321.
[31] Marcuzzi A, Loganes C, Valencic E, Piscianz E, Monasta L, Bilel S, Bortul R, Celeghini C, Zweyer M, Tommasini A. Neuronal dysfunction associated with cholesterol deregulation[J]. Int J Mol Sci, 2018, 19:1523.
[32] Adlakha YK, Saini N. MicroRNA:a connecting road between apoptosis and cholesterol metabolism[J]. Tumour Biol, 2016, 37:8529-8554.
[33] Damisah EC, Rai A, Grutzendler J. TREM2:modulator of lipid metabolism in microglia[J]. Neuron, 2020, 105:759-761.
[34] Yu LE, Lai CL, Lee CT, Wang JY. Highly electronegative low-density lipoprotein L5 evokes microglial activation and creates a neuroinflammatory stress via Toll-like receptor 4 signaling[J]. J Neurochem, 2017, 142:231-245.
[35] Xu C, Apostolova LG, Oblak AL, Gao S. Association of hypercholesterolemia with Alzheimer's disease pathology and cerebral amyloid angiopathy[J]. J Alzheimers Dis, 2020, 73:1305-1311.
[36] Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial hypercholesterolemia:the most frequent cholesterol metabolism disorder caused disease[J]. Int J Mol Sci, 2018, 19:3426.
[37] Raal FJ, Hovingh GK, Catapano AL. Familial hypercholesterolemia treatments:guidelines and new therapies[J]. Atherosclerosis, 2018, 277:483-492.
[38] Tomlinson B, Hu M, Chow E. Current status of familial hypercholesterolemia in Chinese populations[J]. Curr Opin Lipidol, 2019, 30:94-100.
[39] Wierzbicki AS. Noncoronary artery disease in familial hypercholesterolemia:underdiagnosis of peripheral arterial disease[J]? Angiology, 2019, 70:893-895.
[40] Pérez de Isla L, Alonso R, Mata N, Saltijeral A, Muñiz O, Rubio-Marin P, Diaz-Diaz JL, Fuentes F, de Andrés R, Zambón D, Galiana J, Piedecausa M, Aguado R, Mosquera D, Vidal JI, Ruiz E, Manjón L, Mauri M, Padró T, Miramontes JP, Mata P; SAFEHEART Investigators. Coronary heart disease, peripheral arterial disease, and stroke in familial hypercholesterolaemia:insights from the SAFEHEART registry (Spanish Familial Hypercholesterolaemia Cohort Study)[J]. Arterioscler Thromb Vasc Biol, 2016, 36:2004-2010.
[41] Cheng X, Huang Y, Qiu X, Cheng X, Jin Y, Hu Y, Yang B, Zhao J, Lei Y, Zheng F. Novel compound heterozygous mutations in low density lipoprotein receptor gene causes a severe phenotype in a Chinese hypercholesterolemia family[J]. Exp Ther Med, 2018, 16:901-907.
[42] Maliachova O, Stabouli S. Familial hypercholesterolemia in children and adolescents:diagnosis and treatment[J]. Curr Pharm Des, 2018, 24:3672-3677.
[43] Beheshti S, Madsen CM, Varbo A, Benn M, Nordestgaard BG. Relationship of familial hypercholesterolemia and high low-density lipoprotein cholesterol to ischemic stroke:copenhagen general population study[J]. Circulation, 2018, 138:578-589.
[44] Akioyamen LE, Tu JV, Genest J, Ko DT, Coutin AJS, Shan SD, Chu A. Risk of ischemic stroke and peripheral arterial disease in heterozygous familial hypercholesterolemia:a meta-analysis[J]. Angiology, 2019, 70:726-736.
[45] Hyttinen L, Autti T, Rauma S, Soljanlahti S, Vuorio AF, Strandberg TE. White matter hyperintensities on T2-weighted MRI images among DNA-verified older familial hypercholesterolemia patients[J]. Acta Radiol, 2009, 50:320-326.
[46] Todate Y, Uwano I, Yashiro S, Chida A, Hasegawa Y, Oda T, Nagasawa K, Honma H, Sasaki M, Ishigaki Y. High prevalence of cerebral small vessel disease on 7T magnetic resonance imaging in familial hypercholesterolemia[J]. J Atheroscler Thromb, 2019, 26:1045-1053.
[47] Barkas F, Elisaf M, Milionis H. Statins decrease the risk of stroke in individuals with heterozygous familial hypercholesterolemia:a systematic review and meta-analysis[J]. Atherosclerosis, 2015, 243:60-64.
[48] Femir-Gurtuna B, Kurt E, Ulasoglu-Yildiz C, Bayram A, Yildirim E, Soncu-Buyukiscan E, Bilgic B. White-matter changes in early and late stages of mild cognitive impairment[J]. J Clin Neurosci, 2020, 78:181-184.
[49] Tong XK, Trigiani LJ, Hamel E. High cholesterol triggers white matter alterations and cognitive deficits in a mouse model of cerebrovascular disease:benefits of simvastatin[J]. Cell Death Dis, 2019, 10:89.
[50] Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, Kastelein JJP, Hutten BA. 20-year follow-up of statins in children with familial hypercholesterolemia[J]. N Engl J Med, 2019, 381:1547-1556.
[51] Kraft P, Schuhmann MK, Garz C, Jandke S, Urlaub D, Mencl S, Zernecke A, Heinze HJ, Carare RO, Kleinschnitz C, Schreiber S. Hypercholesterolemia induced cerebral small vessel disease[J]. PLoS One, 2017, 12:e0182822.
[52] Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, Heinze HJ, Goertler M, Reymann KG, Braun H. The pathologic cascade of cerebrovascular lesions in SHRSP:is erythrocyte accumulation an early phase[J]? J Cereb Blood Flow Metab, 2012, 32:278-290.
[53] Haussen DC, Henninger N, Kumar S, Selim M. Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage[J]. Stroke, 2012, 43:2677-2681.
[54] Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-induced cerebral small vessel disease leading to cognitive impairment[J]. Chin Med J (Engl), 2018, 131:615-619.
[55] Duan R, Xue W, Wang K, Yin N, Hao H, Chu H, Wang L, Meng P, Diao L. Estimation of the LDL subclasses in ischemic stroke as a risk factor in a Chinese population[J]. BMC Neurol, 2020, 20:414.
[56] Zhou P, Liu J, Wang L, Feng W, Cao Z, Wang P, Liu G, Sun C, Shen Y, Wang L, Xu J, Meng P, Li Z, Xu WY, Lan X. Association of small dense low-density lipoprotein cholesterol with stroke risk, severity and prognosis[J]. J Atheroscler Thromb, 2020, 27:1310-1324.
[57] Authors/Task Force Members, ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias:lipid modification to reduce cardiovascular risk[J]. Atherosclerosis, 2019, 290:140-205.
[58] Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani SS, Yeboah J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol:a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines[J]. J Am Coll Cardiol, 2019, 73:3168-3209.
[59] McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage:a meta-analysis of 31 randomized controlled trials[J]. Stroke, 2012, 43:2149-2156.
[60] Lei C, Chen T, Chen C, Ling Y. Pre-intracerebral hemorrhage and in-hospital statin use in intracerebral hemorrhage:a systematic review and meta-analysis[J]. World Neurosurg, 2018, 111:47-54.
[61] Ma C, Gurol ME, Huang Z, Lichtenstein AH, Wang X, Wang Y, Neumann S, Wu S, Gao X. Low-density lipoprotein cholesterol and risk of intracerebral hemorrhage:a prospective study[J]. Neurology, 2019, 93:e445-457.
[62] Katsanos AH, Lioutas VA, Charidimou A, Catanese L, Ng KKH, Perera K, de Sa Boasquevisque D, Falcone GJ, Sheth KN, Romero JR, Tsivgoulis G, Smith EE, Sharma M, Selim MH, Shoamanesh A; International META-MICROBLEEDS Initiative. Statin treatment and cerebral microbleeds:a systematic review and meta-analysis[J]. J Neurol Sci, 2021, 420:117224.
[63] Chang JJ, Katsanos AH, Khorchid Y, Dillard K, Kerro A, Burgess LG, Goyal N, Alexandrov AW, Alexandrov AV, Tsivgoulis G. Higher low-density lipoprotein cholesterol levels are associated with decreased mortality in patients with intracerebral hemorrhage[J]. Atherosclerosis, 2018, 269:14-20.
[64] Rodriguez-Luna D, Rubiera M, Ribo M, Coscojuela P, Pagola J, Piñeiro S, Ibarra B, Meler P, Maisterra O, Romero F, Alvarez-Sabin J, Molina CA. Serum low-density lipoprotein cholesterol level predicts hematoma growth and clinical outcome after acute intracerebral hemorrhage[J]. Stroke, 2011, 42:2447-2452. |