[1] Parkinson T. Outlines of zoonosological tables[J]. Lond Med Phys J, 1817, 38:449-453.
[2] Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease[J]. Neurobiol Aging, 2003, 24:197-211.
[3] Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease[J]. Cell, 2016, 167:1469-1480.
[4] Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30:1591-1601.
[5] Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson's disease:studying pain, anxiety and depression in animal models[J]. Neurosci Biobehav Rev, 2019, 96:335-352.
[6] Valkovic P, Minar M, Singliarova H, Harsany J, Hanakova M, Martinkova J, Benetin J. Pain in Parkinson's disease:a cross-sectional study of its prevalence, types, and relationship to depression and quality of life[J]. PLoS One, 2015, 10:e0136541.
[7] Robbins TW, Cools R. Cognitive deficits in Parkinson's disease:a cognitive neuroscience perspective[J]. Mov Disord, 2014, 29:597-607.
[8] Sethi K. Levodopa unresponsive symptoms in Parkinson disease[J]. Mov Disord, 2008, 23 Suppl 3:521-533.
[9] Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease[J]. Nat Rev Neurosci, 2017, 18:101-113.
[10] Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT, Wicht H, Korf HW, den Dunnen W, Rüb U. The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies[J]. Brain Pathol, 2015, 25:121-135.
[11] Pagano G, Niccolini F, Fusar-Poli P, Politis M. Serotonin transporter in Parkinson's disease:a Meta-analysis of positron emission tomography studies[J]. Ann Neurol, 2017, 81:171-180.
[12] Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson's disease:the case for noradrenergic enhancement[J]. Mov Disord, 2014, 29:1710-1719.
[13] Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kövari E. Neuropathology of dementia in a large cohort of patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2013, 19:864-868.
[14] Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders[J]. Trends Neurosci, 1989, 12:366-375.
[15] DeLong MR. Primate models of movement disorders of basal ganglia origin[J]. Trends Neurosci, 1990, 13:281-285.
[16] Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior[J]. Curr Opin Neurobiol, 1993, 3:950-957.
[17] Mink JW. The basal ganglia:focused selection and inhibition of competing motor programs[J]. Prog Neurobiol, 1996, 50:381-425.
[18] Coudé D, Parent A, Parent M. Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates[J]. Brain Struct Funct, 2018, 223:3959-3973.
[19] Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR, Oya H, Greenlee JD, Narayanan NS. A human prefrontal-subthalamic circuit for cognitive control[J]. Brain, 2018, 141:205-216.
[20] Bariselli S, Fobbs WC, Creed MC, Kravitz AV. A competitive model for striatal action selection[J]. Brain Res, 2019, 1713:70-79.
[21] Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex[J]. Annu Rev Neurosci, 1986, 9:357-381.
[22] Haynes WI, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration:implications for basal ganglia models and deep brain stimulation[J]. J Neurosci, 2013, 33:4804-4814.
[23] Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus:patterns of connectivity and sub-parcellation using diffusion weighted imaging[J]. Neuroimage, 2012, 60:83-94.
[24] Pasquereau B, DeLong MR, Turner RS. Primary motor cortex of the parkinsonian monkey:altered encoding of active movement[J]. Brain, 2016, 139(Pt 1):127-143.
[25] Yoon HH, Park JH, Kim YH, Min J, Hwang E, Lee CJ, Suh JK, Hwang O, Jeon SR. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease[J]. Neurosurgery, 2014, 74:533-540.
[26] Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, Arbuthnott GW, Yung WH. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex[J]. Neuron, 2012, 76:1030-1041.
[27] Muralidharan A, Jensen AL, Connolly A, Hendrix CM, Johnson MD, Baker KB, Vitek JL. Physiological changes in the pallidum in a progressive model of Parkinson's disease:are oscillations enough[J]? Exp Neurol, 2016, 279:187-196.
[28] Starr PA, Rau GM, Davis V, Marks WJ Jr, Ostrem JL, Simmons D, Lindsey N, Turner RS. Spontaneous pallidal neuronal activity in human dystonia:comparison with Parkinson's disease and normal macaque[J]. J Neurophysiol, 2005, 93:3165-3176.
[29] McCairn KW, Turner RS. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex[J]. J Neurophysiol, 2015, 113:2537-2548.
[30] Magnin M, Morel A, Jeanmonod D. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients[J]. Neuroscience, 2000, 96:549-564.
[31] Singh A, Liang L, Kaneoke Y, Cao X, Papa SM. Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates[J]. J Neurophysiol, 2015, 113:1533-1544.
[32] Pan MK, Kuo SH, Tai CH, Liou JY, Pei JC, Chang CY, Wang YM, Liu WC, Wang TR, Lai WS, Kuo CC. Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control[J]. J Clin Invest, 2016, 126:4516-4526.
[33] Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[J]. J Neurosci, 2001, 21:1033-1038.
[34] Deffains M, Iskhakova L, Katabi S, Israel Z, Bergman H. Longer β oscillatory episodes reliably identify pathological subthalamic activity in parkinsonism[J]. Mov Disord, 2018, 33:1609-1618.
[35] Parker T, Huang Y, Gong C, Chen Y, Wang S, Green AL, Aziz T, Li L. Pain-induced beta activity in the subthalamic nucleus of Parkinson's disease[J]. Stereotact Funct Neurosurg, 2020, 98:193-199.
[36] Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Ostrem JL, Galifianakis NB, Luciano MS, Wang SS, Ziman N, Taylor R, Starr PA. Chronic multisite brain recordings from a totally implantable bidirectional neural interface:experience in 5 patients with Parkinson's disease[J]. J Neurosurg, 2018, 128:605-616.
[37] Rappel P, Grosberg S, Arkadir D, Linetsky E, Abu Snineh M, Bick AS, Tamir I, Valsky D, Marmor O, Abo Foul Y, Peled O, Gilad M, Daudi C, Ben-Naim S, Bergman H, Israel Z, Eitan R. Theta-alpha oscillations characterize emotional subregion in the human ventral subthalamic nucleus[J]. Mov Disord, 2020, 35:337-343. |