[1] National Health Commission Medical Administration and Hospital Authority. Diagnosis and treatment of gliomas (2018 Edition)[J]. Zhonghua Shen Jing Wai Ke Za Zhi, 2019, 35:217-239.[国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018版)[J]. 中华神经外科杂志, 2019, 35:217-239.]
[2] Macdonald DB. Intraoperative motor evoked potential monitoring:overview and update[J]. J Clin Monit Comput, 2006, 20:347-377.
[3] Macdonald DB, Skinner S, Shils J, Yingling C; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring-aposition statement by the American Society of Neurophysiological Monitoring[J]. Clin Neurophysiol, 2013, 124:2291-2316.
[4] Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation[J]. Brain, 1937, 60:389-443.
[5] Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia:technical description[J]. Neurosurgery, 1993, 32:219-226.
[6] Schucht P, Seidel K, Jilch A, Beck J, Raabe A. A review of monopolar motor mapping and a comprehensive guide to continuous dynamic motor mapping for resection of motor eloquent brain tumors[J]. Neurochirurgie, 2017, 63:175-180.
[7] De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome:a meta-analysis[J]. J Clin Oncol, 2012, 30:2559-2565.
[8] Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery[J]. Neurosurgery, 2007, 61(1 Suppl):337-346.
[9] Moiyadi A, Velayutham P, Shetty P, Seidel K, Janu A, Madhugiri V, Singh VK, Patil A, John R. Combined motor evoked potential monitoring and subcortical dynamic mapping in motor eloquent tumors allows safer and extended resections[J]. World Neurosurg, 2018, 120:e259-268.
[10] Gogos AJ, Young JS, Morshed RA, Avalos LN, Noss RS, Villanueva-Meyer JE, Hervey-Jumper SL, Berger MS. Triple motor mapping:transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways[J]. J Neurosurg, 2020.[Epub ahead of print]
[11] Boex C, Haemmerli J, Momjian S, Schaller K. Prognosticvalues of motor evoked potentials in insular, precental, or postcentral resections[J]. J Clin Neurophysiol, 2016, 33:51-59.
[12] Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man:further evidence for the site of activation[J]. J Physiol, 1994, 481:243-250.
[13] Zhou HH, Kelly PJ. Transcranial electrical motor evoked potential monitoring for brain tumor resection[J]. Neurosurgery, 2001, 48:1075-1081.
[14] Abboud T, Schaper M, Dührsen L, Schwarz C, Schmidt NO, Westphal M, Martens T. A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway[J]. J Neurosurg, 2016, 125:795-802.
[15] Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors[J]. J Neurosurg, 2013, 118:287-296.
[16] Krieg SM, Schäffner M, Shiban E, Droese D, Obermüller T, Gempt J, Meyer B, Ringel F. Reliability of intraoperative neurophysiological monitoring using motor evoked potentials during resection of metastases in motor-eloquent brain regions:clinical article[J]. J Neurosurg, 2013, 118:1269-1278.
[17] Okamoto E, Ishikawa E, Yamamoto T, Matsuda M, Nakai K, Matsushita A, Masuda Y, Akutsu H, Ayuzawa S, Sakamaki F, Matsumoto Y, Matsumura A. Variability in amplitude and stimulation threshold values in motor evoked potential (MEP) monitoring during the resection of brain lesions[J]. Clin Neurophysiol, 2015, 126:1271-1278.
[18] Javadi SA, Nabavi A, Giordano M, Faghihzadeh E, Samii A. Evaluation of diffusion tensor imaging-based tractography of the corticospinal tract:a correlative study with intraoperative magnetic resonance imaging and direct electrical subcortical stimulation[J]. Neurosurgery, 2017, 80:287-299.
[19] Plans G, Fernández-Conejero I, Rifà-Ros X, Fernández-Coello A, Rosselló A, Gabarrós A. Evaluation of the high-frequency monopolar stimulation technique for mapping and monitoring the corticospinal tract in patients with supratentorial gliomas:a proposal for intraoperative management based on neurophysiological data analysis in a series of 92 patients[J]. Neurosurgery, 2017, 81:585-594.
[20] Suarez-Meade P, Marenco-Hillembrand L, Prevatt C, Murguia-Fuentes R, Mohamed A, Alsaeed T, Lehrer EJ, Brigham T, Ruiz-Garcia H, Sabsevitz D, Middlebrooks EH, Bechtle PS, Quinones-Hinojosa A, Chaichana KL. Awake vs. asleep motor mapping for glioma resection:a systematic review and meta-analysis[J]. Acta Neurochir (Wien), 2020, 162:1709-1720.
[21] Rech F, Herbet G, Gaudeau Y, Mézières S, Moureau JM, Moritz-Gasser S, Duffau H. A probabilistic map of negative motor areas of the upper limb and face:a brain stimulation study[J]. Brain, 2019, 142:952-965.
[22] Shirota Y, Hanajima R, Ohminami S, Tsutsumi R, Ugawa Y, Terao Y. Supplementary motor area plays a causal role in automatic inhibition of motor responses[J]. Brain Stimul, 2019,12:1020-1026.
[23] Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Fukuchi S, Ohashi M, Kawamata T. Awake craniotomy with transcortical motor evoked potential monitoring for resection of gliomas in the precentral gyrus:utility for predicting motor function[J]. J Neurosurg, 2019.[Epub ahead of print]
[24] Szelényi A, Senft C, Jardan M, Forster MT, Franz K, Seifert V, Vatter H. Intra-operative subcortical electrical stimulation:a comparison of two methods[J]. Clin Neurophysiol, 2011, 122:1470-1475. |