[1] |
Hu B, Ge W, Wang Y, et al. Metabolomic and proteomic analyses of persistent valvular atrial fibrillation and non-valvular atrial fibrillation[J]. Front Genet, 2021,12:789485-789495.
|
[2] |
McCauley MD, Hong L, Sridhar A, et al. Ion channel and structural remodeling in obesity-mediated atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2020,13:755-767.
|
[3] |
Shiou YL, Lin HT, Ke LY, et al. Very low-density lipoproteins of metabolic syndrome modulates STIM1, suppresses store-operated calcium entry, and deranges myofilament proteins in atrial myocytes[J]. J Clin Med, 2019,8:881-895.
|
[4] |
Lee HC, Shin SJ, Huang JK, et al. The role of postprandial very-low-density lipoprotein in the development of atrial remodeling in metabolic syndrome[J]. Lipids Health Dis, 2020,19:210-221.
|
[5] |
Harrison SL, Lane DA, Banach M, et al. Lipid levels, atrial fibrillation and the impact of age: results from the LIPIDOGRAM2015 study[J]. Atherosclerosis, 2020,312:16-22.
|
[6] |
Poulet C, Sanchez-Alonso J, Swiatlowska P, et al. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes[J]. Cardiovasc Res, 2021,117:149-161.
|
[7] |
Tajik B, Tuomainen TP, Jarroch R, et al. Lipid levels, apolipoproteins, and risk of incident atrial fibrillation in men: a report from the kuopio ischaemic heart disease risk factor study (KIHD)[J]. J Clin Lipidol, 2022,16:447-454.
|
[8] |
Garg PK, Guan W, Nomura S, et al. Plasma omega-3 and omega-6 PUFA concentrations and risk of atrial fibrillation: the multi-ethnic study of atherosclerosis[J]. J Nutr, 2021;151:1479-1486.
|
[9] |
Tu T, Li B, Li X, et al. Dietary omega-3 fatty acids reduced atrial fibrillation vulnerability via attenuating myocardial endoplasmic reticulum stress and inflammation in a canine model of atrial fibrillation[J]. J Cardiol, 2022,79:194-201.
|
[10] |
Tajik B, Tuomainen TP, Isanejad M, et al. Serum n-6 polyunsaturated fatty acids and risk of atrial fibrillation: the kuopio ischaemic heart disease risk factor study[J]. Eur J Nutr, 2022,61:1981-1989.
|
[11] |
Zhang J, Zuo K, Fang C, et al. Altered synthesis of genes associated with short-chain fatty acids in the gut of patients with atrial fibrillation[J]. BMC Genomics, 2021,22:634-644.
|
[12] |
Zuo K, Fang C, Liu Z, et al. Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling[J]. Int J Biol Sci, 2022,18:4219-4232.
|
[13] |
Maria Z, Campolo AR, Scherlag BJ, et al. Dysregulation of insulin-sensitive glucose transporters during insulin resistance-induced atrial fibrillation[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864:987-996.
|
[14] |
Maria Z, Campolo AR, Scherlag BJ, et al. Insulin treatment reduces susceptibility to atrial fibrillation in type 1 diabetic mice[J]. Front Cardiovasc Med, 2020,7:134-146.
|
[15] |
Fu L, Rao F, Lian F, et al. Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibrillation in diabetic rats[J]. Life Sci, 2019,239:116903.doi:10.1016/j.Ifs.2019.116903.
|
[16] |
Zheng DL, Wu QR, Zeng P, et al. Advanced glycation end products induce senescence of atrial myocytes and increase susceptibility of atrial fibrillation in diabetic mice[J]. Aging Cell, 2022,21:e13734-e13746.
|
[17] |
Bohne LJ, Jansen HJ, Daniel I, et al. Electrical and structural remodeling contribute to atrial fibrillation in type 2 diabetic db/db mice[J]. Heart Rhythm, 2021,18:118-129.
|
[18] |
Wu X, Liu Y, Tu D, et al. Role of NLRP3-inflammasome/caspase-1/galectin-3 pathway on atrial remodeling in diabetic rabbits[J]. J Cardiovasc Transl Res, 2020,13:731-740.
|
[19] |
Wiersma M, van Marion DMS, Wust RCI, et al. Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation[J]. Cells, 2019,8:1202-1220.
|
[20] |
Yuan M, Gong M, He J, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol, 2022,52:102289-102302.
|
[21] |
Li J, Qi X, Ramos KS, et al. Disruption of sarcoplasmic reticulum-mitochondrial contacts underlies contractile dysfunction in experimental and human atrial fibrillation: a key role of mitofusin 2[J]. J Am Heart Assoc, 2022;11:e024478-e024496.
|
[22] |
Lu Han AW, Qing Li, Zhen Xia, et al. Homocysteine-induced electrical remodeling via the mediation of IP3R1Nav1.5 signaling pathway[J]. Am J Transl Res, 2020,12:3822-3841.
|
[23] |
Han L, Tang Y, Li S, et al. Protective mechanism of SIRT1 on hcy-induced atrial fibrosis mediated by TRPC3[J]. J Cell Mol Med, 2020,24:488-510.
|
[24] |
Lu C, Liu C, Mei D, et al. Comprehensive metabolomic characterization of atrial fibrillation[J]. Front Cardiovasc Med, 2022,9:911845-11863.
|
[25] |
Xie D, Xiong K, Su X, et al. Identification of an endogenous glutamatergic transmitter system controlling excitabi-lity and conductivity of atrial cardiomyocytes[J]. Cell Res, 2021;31:951-964.
|