Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (8): 1304-1308.doi: 10.16352/j.issn.1001-6325.2023.08.1304
• Mini Reviews • Previous Articles Next Articles
ZOU Yuxiang1,2, TANG Hui1,2*
Received:2022-07-21
Revised:2022-12-06
Online:2023-08-05
Published:2023-07-26
Contact:
*htang1122@aliyun.com
CLC Number:
ZOU Yuxiang, TANG Hui. Research progress on the role of TLR2 in the development of gastrointestinal cancer[J]. Basic & Clinical Medicine, 2023, 43(8): 1304-1308.
| [1] | Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2:1-9. |
| [2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71:209-249. |
| [3] | Scheeren FA, Kuo AH, van Weele LJ, et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis[J]. Nat Cell Biol, 2014, 16:1238-1248. |
| [4] | Martínez A, Bono C, Gozalbo D, et al. TLR2 and dectin-1 signaling in mouse hematopoietic stem and progenitor cells impacts the ability of the antigen presenting cells they produce to activate CD4 T cells[J]. Cells, 2020, 9:1317.doi:10.3390/cells9051317. |
| [5] | Su YR, Chen MT, Xiong K, et al. Endogenous Toll-like receptor 2 modulates Th1/Treg-promoting dendritic cells in mice corneal transplantation model[J]. Curr Eye Res, 2020, 45:774-781. |
| [6] | Nakao M, Sugaya M, Fujita H, et al. TLR2 deficiency exacerbates imiquimod-induced psoriasis-like skin inflammation through decrease in regulatory T cells and impaired IL-10 production[J]. Int J Mol Sci, 2020, 21:8560.doi:10.3390/ijms21228560. |
| [7] | Im J, Baik JE, Lee D, et al. Bacterial lipoproteins induce BAFF production via TLR2/MyD88/JNK signaling pathways in dendritic cells[J]. Front Immunol, 2020, 11:564699.doi:10.3389/fimmu.2020.564699. |
| [8] | Mccoy MG, Nascimento DW, Veleeparambil M, et al. Endothelial TLR2 promotes proangiogenic immune cell recruitment and tumor angiogenesis[J]. Sci Signal, 2021, 14:eabc5371.doi:10.1126/scisignal.abc5371. |
| [9] | Lundy J, Gearing LJ, Gao H, et al. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40:6007-6022. |
| [10] | Fan L, Xu C, Ge Q, et al. A. Muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-Mediated M1-like TAMs[J]. Cancer Immunol Res, 2021, 9:1111-1124. |
| [11] | Xu J, Guo R, Jia J, et al. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8(+) T cell cytotoxicity in patients with gastric cancer[J]. BMC Immunol, 2021, 22:67.doi:10.1186/s12865-021-00459-z. |
| [12] | Chang YJ, Wu MS, Lin JT, et al. Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation[J]. J Immunol, 2005, 175:8242-8252. |
| [13] | Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-κB/AP-1 signaling pathway[J]. Int J Mol Med, 2020, 45:131-140. |
| [14] | Xu Z, Lv Z, Chen F, et al. Dysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer[J]. Front Immunol, 2022, 13:1008975.doi:10.3389/fimmu.2022.1008975. |
| [15] | Liu YD, Ji CB, Li SB, et al. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt and NF-κB signaling pathways[J]. Int Immunopharmacol, 2018, 59:375-383. |
| [16] | Chen X, Zhang L, Jiang Y, et al. Radiotherapy-induced cell death activates paracrine HMGB1-TLR2 signaling and accelerates pancreatic carcinoma metastasis[J]. J Exp Clin Cancer Res, 2018, 37:77.doi:10.1186/s13046-018-0726-2. |
| [17] | Kajino-Sakamoto R, Fujishita T, Taketo MM, et al. Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells[J]. Oncogene, 2021, 40:408-420. |
| [18] | Tang F, Cao F, Lu C, et al. Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression[J]. Cancer Sci, 2022, 113:565-575. |
| [19] | Zhang S, Wang J, Chen T, et al. α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the Akt/GSK3β/β-Catenin pathway[J]. Bioengineered, 2021, 12:5688-5704. |
| [20] | Gao L, Wang TH, Chen CP, et al. Targeting COX-2 potently inhibits proliferation of cancer cells in vivo but not in vitro in cutaneous squamous cell carcinoma[J]. Transl Cancer Res, 2021, 10:2219-2228. |
| [21] | Ma J, Zhang C, Liang W, et al. ω-3 and ω-6 polyunsaturated fatty acids regulate the proliferation, invasion and angiogenesis of gastric cancer through COX/PGE signaling pathway[J]. Front Oncol, 2022, 12:802009.doi:10.3389/fonc.2022.802009. |
| [22] | Wu L, Sun J, Liu L, et al. Anti-toll-like receptor 2 antibody ameliorates hepatic injury, inflammation, fibrosis and steatosis in obesity-related metabolic disorder rats via regulating MAPK and NF-κB pathways[J]. Int Immunopharmacol, 2020, 82:106368.doi:10.1016/j.intimp.2020.106368. |
| [23] | Khedr OMS, El-Sonbaty SM, Moawed FSM, et al. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DEN-induced hepatocarcinogenesis in rats[J]. Nutr Cancer, 2022, 74:1037-1047. |
| [24] | Xie X, Lv H, Liu C, et al. HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis[J]. BMC Med, 2021, 19:247.doi:10.1186/s12916-021-02085-3. |
| [25] | Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice[J]. Gastroenterology, 2017, 152:1419-1433. |
| [26] | Li S, Li F, Xu L, et al. TLR2 agonist promotes myeloid-derived suppressor cell polarization via Runx1 in hepatocellular carcinoma[J]. Int Immunopharmacol, 2022, 111:109168.doi:10.1016/j.intimp.2022.109168. |
| [27] | Bermudez M, Grabowski M, Murgueitio MS, et al. Biological characterization, mechanistic investigation and structure-activity relationships of chemically stable TLR2 antagonists[J]. Chem Med Chem, 2020, 15:1364-1371. |
| [1] | LU Wei, WANG Yanmin, LIU Bingchen, TAO Xin, WANG Shipeng, CAO Qiuye. Berberine enhances the chemotherapy sensitivity of prostate cancer cell line 22RV1 to docetaxel [J]. Basic & Clinical Medicine, 2026, 46(1): 39-45. |
| [2] | LI Binfeng, LYU Fayou, YI Huijun, LYU Lyu. Advances in the mechanism of action of the ring finger proteins family in breast cancer [J]. Basic & Clinical Medicine, 2026, 46(1): 124-128. |
| [3] | WANG Yangyang, LIU Yang, ZHAO Han, WANG Wei. Current applications and implications of Comprehensive Geriatric Assessment in elderly cancer patients [J]. Basic & Clinical Medicine, 2025, 45(9): 1132-1138. |
| [4] | WANG Qiumei, LI Xiaoyuan, KANG Lin, SUN Xiaohong, LI Hailong, DUAN Yanping, LIU Ying, GUAN Mei, ZHAO Lin. Consensus recommendation on Comprehensive Geriatric Assessment for elderly cancer patients from Peking Union Medical College Hospital [J]. Basic & Clinical Medicine, 2025, 45(9): 1122-1131. |
| [5] | KANG Lei, ZHU Junlan. Molecular mechanisms of selenium binding protein 1 expression regulation in cancer cells [J]. Basic & Clinical Medicine, 2025, 45(9): 1224-1228. |
| [6] | WEI Xinwen, WEN Xiaojun, FAN Zhaoqiang, LAO Xifeng, ZHANG Luqing, ZHONG Ming. CircAPLP2 inhibits proliferation, migration and invasion of human colorectal cancer cell lines through regulating miR-455-3p/STMN1 axis [J]. Basic & Clinical Medicine, 2025, 45(9): 1208-1214. |
| [7] | AN Xin, JIA Lin, Mawusumu·MAMUT, HUANG Zhipeng, KahrimanI·SLAM, Rexiati·REHEMAN, Hairila·WULAMU, Kerbanjiang·ABULIKIM, Jesur·BATUR. Effects of ANGPT1 on proliferation,invasion and angiogenesis of mouse prostate cancer cell line RM-1 [J]. Basic & Clinical Medicine, 2025, 45(9): 1165-1172. |
| [8] | CHEN Lingyun, CHEN Wensong, SUN Qinqiang, ZI Jin. Progress in urinary metabolomics research technologies and applications in cancer diagnosis [J]. Basic & Clinical Medicine, 2025, 45(8): 999-1009. |
| [9] | ZOU Qingbo, ZHANG Guochen, PAN Changjing. Gypenoside inhibits the proliferation, migration and invasion of prostate cancer cell line PC-3 [J]. Basic & Clinical Medicine, 2025, 45(8): 1059-1065. |
| [10] | HUANG Qianqian, JIA Yufang, YU Huajun,CHEN Rongrong,CHEN Lili, WU Jun, ZHANG Haitao. Stable knockout of ACSS3 in lung cancer cell line using CRISPR/Cas 9 technology [J]. Basic & Clinical Medicine, 2025, 45(8): 1016-1021. |
| [11] | JIA Chunliang, LIANG Lei, LI Hansong, WANG Jian, ZHANG Lei, LI Qingke, YAO Yuan. Scutellarin inhibits proliferation and migration of human gastric cancer cell line MGC803 [J]. Basic & Clinical Medicine, 2025, 45(8): 1048-1053. |
| [12] | WU Haifeng, LI Xiaolong, LI Fang, CHEN Xiaohua, SONG Rui, HAN Xue. Expression of KIF23 in rectal cancer tissues is correlated with prognosis [J]. Basic & Clinical Medicine, 2025, 45(8): 1054-1058. |
| [13] | TIAN Ye, HE Quan, WANG Xiaojuan. RPRD1B is highly expressed in human ovarian cancer cell lines and promotes tumor cell proliferation [J]. Basic & Clinical Medicine, 2025, 45(8): 1066-1072. |
| [14] | CHEN Lei,REN Weihao,WANG Lide. Knockdown of translocase of inner mitochondrial membrane 8A enhances gefitinib sensitivity to lung cancer cell line PC-9 [J]. Basic & Clinical Medicine, 2025, 45(8): 1073-1077. |
| [15] | YANG Rui, DU Sifen, JIANG Lehui, FU Tian, REN Pengju, JIANG Chengyu, ZHANG Yanli. Network pharmacology-based screening and validation of tea-derived small molecules against lung cancer [J]. Basic & Clinical Medicine, 2025, 45(7): 939-946. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||