Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (8): 1304-1308.doi: 10.16352/j.issn.1001-6325.2023.08.1304
• Mini Reviews • Previous Articles Next Articles
ZOU Yuxiang1,2, TANG Hui1,2*
Received:
2022-07-21
Revised:
2022-12-06
Online:
2023-08-05
Published:
2023-07-26
Contact:
*htang1122@aliyun.com
CLC Number:
ZOU Yuxiang, TANG Hui. Research progress on the role of TLR2 in the development of gastrointestinal cancer[J]. Basic & Clinical Medicine, 2023, 43(8): 1304-1308.
[1] | Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2:1-9. |
[2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71:209-249. |
[3] | Scheeren FA, Kuo AH, van Weele LJ, et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis[J]. Nat Cell Biol, 2014, 16:1238-1248. |
[4] | Martínez A, Bono C, Gozalbo D, et al. TLR2 and dectin-1 signaling in mouse hematopoietic stem and progenitor cells impacts the ability of the antigen presenting cells they produce to activate CD4 T cells[J]. Cells, 2020, 9:1317.doi:10.3390/cells9051317. |
[5] | Su YR, Chen MT, Xiong K, et al. Endogenous Toll-like receptor 2 modulates Th1/Treg-promoting dendritic cells in mice corneal transplantation model[J]. Curr Eye Res, 2020, 45:774-781. |
[6] | Nakao M, Sugaya M, Fujita H, et al. TLR2 deficiency exacerbates imiquimod-induced psoriasis-like skin inflammation through decrease in regulatory T cells and impaired IL-10 production[J]. Int J Mol Sci, 2020, 21:8560.doi:10.3390/ijms21228560. |
[7] | Im J, Baik JE, Lee D, et al. Bacterial lipoproteins induce BAFF production via TLR2/MyD88/JNK signaling pathways in dendritic cells[J]. Front Immunol, 2020, 11:564699.doi:10.3389/fimmu.2020.564699. |
[8] | Mccoy MG, Nascimento DW, Veleeparambil M, et al. Endothelial TLR2 promotes proangiogenic immune cell recruitment and tumor angiogenesis[J]. Sci Signal, 2021, 14:eabc5371.doi:10.1126/scisignal.abc5371. |
[9] | Lundy J, Gearing LJ, Gao H, et al. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 40:6007-6022. |
[10] | Fan L, Xu C, Ge Q, et al. A. Muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-Mediated M1-like TAMs[J]. Cancer Immunol Res, 2021, 9:1111-1124. |
[11] | Xu J, Guo R, Jia J, et al. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8(+) T cell cytotoxicity in patients with gastric cancer[J]. BMC Immunol, 2021, 22:67.doi:10.1186/s12865-021-00459-z. |
[12] | Chang YJ, Wu MS, Lin JT, et al. Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation[J]. J Immunol, 2005, 175:8242-8252. |
[13] | Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-κB/AP-1 signaling pathway[J]. Int J Mol Med, 2020, 45:131-140. |
[14] | Xu Z, Lv Z, Chen F, et al. Dysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer[J]. Front Immunol, 2022, 13:1008975.doi:10.3389/fimmu.2022.1008975. |
[15] | Liu YD, Ji CB, Li SB, et al. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt and NF-κB signaling pathways[J]. Int Immunopharmacol, 2018, 59:375-383. |
[16] | Chen X, Zhang L, Jiang Y, et al. Radiotherapy-induced cell death activates paracrine HMGB1-TLR2 signaling and accelerates pancreatic carcinoma metastasis[J]. J Exp Clin Cancer Res, 2018, 37:77.doi:10.1186/s13046-018-0726-2. |
[17] | Kajino-Sakamoto R, Fujishita T, Taketo MM, et al. Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells[J]. Oncogene, 2021, 40:408-420. |
[18] | Tang F, Cao F, Lu C, et al. Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression[J]. Cancer Sci, 2022, 113:565-575. |
[19] | Zhang S, Wang J, Chen T, et al. α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the Akt/GSK3β/β-Catenin pathway[J]. Bioengineered, 2021, 12:5688-5704. |
[20] | Gao L, Wang TH, Chen CP, et al. Targeting COX-2 potently inhibits proliferation of cancer cells in vivo but not in vitro in cutaneous squamous cell carcinoma[J]. Transl Cancer Res, 2021, 10:2219-2228. |
[21] | Ma J, Zhang C, Liang W, et al. ω-3 and ω-6 polyunsaturated fatty acids regulate the proliferation, invasion and angiogenesis of gastric cancer through COX/PGE signaling pathway[J]. Front Oncol, 2022, 12:802009.doi:10.3389/fonc.2022.802009. |
[22] | Wu L, Sun J, Liu L, et al. Anti-toll-like receptor 2 antibody ameliorates hepatic injury, inflammation, fibrosis and steatosis in obesity-related metabolic disorder rats via regulating MAPK and NF-κB pathways[J]. Int Immunopharmacol, 2020, 82:106368.doi:10.1016/j.intimp.2020.106368. |
[23] | Khedr OMS, El-Sonbaty SM, Moawed FSM, et al. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DEN-induced hepatocarcinogenesis in rats[J]. Nutr Cancer, 2022, 74:1037-1047. |
[24] | Xie X, Lv H, Liu C, et al. HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis[J]. BMC Med, 2021, 19:247.doi:10.1186/s12916-021-02085-3. |
[25] | Tsoi H, Chu ESH, Zhang X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice[J]. Gastroenterology, 2017, 152:1419-1433. |
[26] | Li S, Li F, Xu L, et al. TLR2 agonist promotes myeloid-derived suppressor cell polarization via Runx1 in hepatocellular carcinoma[J]. Int Immunopharmacol, 2022, 111:109168.doi:10.1016/j.intimp.2022.109168. |
[27] | Bermudez M, Grabowski M, Murgueitio MS, et al. Biological characterization, mechanistic investigation and structure-activity relationships of chemically stable TLR2 antagonists[J]. Chem Med Chem, 2020, 15:1364-1371. |
[1] | SU Lingfeng, WANG Huxia, WANG Yanfeng, SONG Zhangjun. Impact of chronic stress on the development of breast cancer [J]. Basic & Clinical Medicine, 2024, 44(9): 1303-1307. |
[2] | XIAO Yanhong, JIANG Mingdong, LIN Yeyuan, RAN Can, LIANG Bo. Scutellarin inhibits proliferation and migration of human prostate cancer cell line PC-3 [J]. Basic & Clinical Medicine, 2024, 44(9): 1229-1235. |
[3] | XIA Yujia, YANG Zhenli, DAI Di, LIU Yuqin. Culture and characterization of breast cancer organoids [J]. Basic & Clinical Medicine, 2024, 44(9): 1223-1228. |
[4] | LIU Baoqing, HUANG Rong, LU Yan, LI Kai, ZHANG Ning, LIU Changzheng, SONG Wei. Progress of gastric cancer organoids in basic research and clinical application [J]. Basic & Clinical Medicine, 2024, 44(9): 1219-1222. |
[5] | ZHOU Changdong, LIN Yang, SUN Kai, TIAN Yuxin. Knockdown of lncRNA UCA1 reduces gemcitabine resistance of human bladder cancer cell line T24 [J]. Basic & Clinical Medicine, 2024, 44(8): 1113-1119. |
[6] | HOU Nan, LIU Yuan, GAO Jun, WANG Jing, YUAN Meng. Whole blood NPM1, MCP-1 and intestinal flora are associated with gastric cancer progression and prognosis [J]. Basic & Clinical Medicine, 2024, 44(8): 1137-1142. |
[7] | YAO Anjun, CHEN Lingzi, JIN Huixian. Docosahexaenoic acid inhibits proliferation of human colon cancer cell line HT-29 [J]. Basic & Clinical Medicine, 2024, 44(8): 1107-1112. |
[8] | JIN Qing, DING Youming. Research progress on the role of FOXC1 in the development of digestive system cancer [J]. Basic & Clinical Medicine, 2024, 44(7): 1049-1053. |
[9] | ZHENG Hong, CHEN Xiaoxia, HAN Lizhou, CHEN Miao, HUANGFU Juan. Decrease of lncRNA-RMRP expression inhibits proliferation and invasion of human lung cancer cell line A549 [J]. Basic & Clinical Medicine, 2024, 44(7): 974-978. |
[10] | SUN Xu, LI Shunshun, WANG Dianheng, WANG Zhenfeng. Bioinformatics analysis of differential expression of CD44 in glioblastomas and cell experimental validation [J]. Basic & Clinical Medicine, 2024, 44(6): 800-808. |
[11] | CAO Chenxin, TANG Hui, GENG Ruixuan, GUO Fuping, BAI Chunmei, WANG Yingyi, LI Taisheng. Correlation between circulating CD4+CD45RA+CD62L+ T cells and prognosis of metastatic non-small cell lung cancer treated with EGFR-TKI [J]. Basic & Clinical Medicine, 2024, 44(5): 658-664. |
[12] | WANG Tingting, XIAO Ning, LIN Dianxin, DONG Haitao. Allicin inhibits the proliferation of oral cancer cells line CAL27 [J]. Basic & Clinical Medicine, 2024, 44(5): 673-676. |
[13] | LIANG Xiangcun, WEI Xiaoyu, LIANG Jian, WANG Qing, GENG Guang. Anlotinib inhibits proliferation and promotes apoptosis of human non-small cell lung cancer cell lines through miR-16-5p/PD-1 axis [J]. Basic & Clinical Medicine, 2024, 44(4): 503-512. |
[14] | LU Kai, LU Jianju, GUO Wenli, HUANG Jianqi, LI Zhihua. lncRNA VIM-AS5 expression and its effect on proliferation and migration of human breast cancer cell lines [J]. Basic & Clinical Medicine, 2024, 44(4): 447-453. |
[15] | YANG Kaifei, ZHU Jingge, ZHANG Yangyang, ZHAO Junguo, GAO Yuyue, HU Huanhuan, JI Guojie. Effect of sorafenib induced apoptosis and autophagy on drug resistance in HeLa cells [J]. Basic & Clinical Medicine, 2024, 44(4): 467-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备07012236号
Website Copyright © Basic & Clinical Medicine