Basic & Clinical Medicine ›› 2025, Vol. 45 ›› Issue (7): 963-968.doi: 10.16352/j.issn.1001-6325.2025.07.0963
• Mini Reviews • Previous Articles Next Articles
DUAN Wenxin1, SONG Wanlu2, YANG Peiran2*, WANG Jing3
Received:
2025-04-22
Revised:
2025-05-20
Online:
2025-07-05
Published:
2025-06-24
Contact:
*peiran.yang@foxmail.com
CLC Number:
DUAN Wenxin, SONG Wanlu, YANG Peiran, WANG Jing. Progress on omics studies of chronic thromboembolic pulmonary hypertension[J]. Basic & Clinical Medicine, 2025, 45(7): 963-968.
[1] | Rosen K, Raanani E, Kogan A, et al. Chronic thromboembolic pulmonary hypertension in patients with antiphospholipid syndrome: risk factors and management[J]. J Heart Lung Transplant, 2022,41:208-216. doi:10.1016/j.healun.2021.10.016. |
[2] | Barco S, Mavromanoli AC, Kreitner KF, et al. Preexist-ing chronic thromboembolic pulmonary hypertension in acute pulmonary embolism[J]. Chest, 2023,163:923-932. doi:10.1016/j.chest.2022.11.045. |
[3] | Durrington C, Hurdman JA, Elliot CA, et al. Systematic pulmonary embolism follow-up increases diagnostic rates of chronic thromboembolic pulmonary hypertension and identifies less severe disease: results from the ASPIRE Registry[J]. Eur Respir J, 2024,63:2300846. doi:10.1183/13993003.00846-2023. |
[4] | Liley J, Newnham M, Bleda M, et al. Shared and distinct genomics of chronic thromboembolic pulmonary hyperten-sion and pulmonary embolism[J]. Am J Respir Crit Care Med, 2024,209:1477-1485. doi:10.1164/rccm.202307-1236OC. |
[5] | Valerio L, Mavromanoli AC, Barco S, et al. Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study[J]. Eur Heart J, 2022,43:3387-3398. doi:10.1093/eurheartj/ehac206. |
[6] | Klok FA, Vágó E, Horváth-Puhó E, et al. Incidence and clinical course of chronic thromboembolic pulmonary hypertension with or without a history of venous thromboembolism in Denmark[J]. J Thromb Haemost, 2024,22:3562-3571. doi:10.1016/j.jtha.2024.09.006. |
[7] | Quarck R, Wynants M, Verbeken E, et al. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension[J]. Eur Respir J, 2015,46:431-443. doi:10.1183/09031936.00009914. |
[8] | Manz XD, Szulcek R, Pan X, et al. Epigenetic modification of the von Willebrand factor promoter drives platelet aggregation on the pulmonary endothelium in chronic thromboembolic pulmonary hypertension[J]. Am J Respir Crit Care Med, 2022,205:806-818. doi:10.1164/rccm.202109-2075OC. |
[9] | Heuts S, Kawczynski MJ, Leus A, et al. The volume-outcome relationship for pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension[J]. Eur Respir J, 2025,65:2401865. doi:10.1183/13993003.01865-2024. |
[10] | Delcroix M, Pepke-Zaba J, D′Armini AM, et al. Worldwide CTEPH registry: long-term outcomes with pulmonary endarterectomy, balloon pulmonary angioplasty, and medical therapy[J]. Circulation, 2024,150:1354-1365. doi:10.1161/CIRCULATIONAHA.124.068610. |
[11] | Jaïs X, Brenot P, Bouvaist H, et al. Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): a multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study[J]. Lancet Respir Med, 2022,10:961-971. doi:10.1016/S2213-260000214-4. |
[12] | Viswanathan G, Kirshner HF, Nazo N, et al. Single-cell analysis reveals distinct immune and smooth muscle cell populations that contribute to chronic thromboem-bolic pulmonary hypertension[J]. Am J Respir Crit Care Med, 2023,207:1358-1375. doi:10.1164/rccm.202203-0441OC. |
[13] | Miao R, Dong X, Gong J, et al. Cell landscape atlas for patients with chronic thromboembolic pulmonary hypertension after pulmonary endarterectomy constructed using single-cell RNA sequencing[J]. Aging (Albany NY), 2021,13:16485-16499. doi:10.18632/aging.203168. |
[14] | Miao R, Dong X, Gong J, et al. Examining the development of chronic thromboembolic pulmonary hypertension at the single-cell level[J]. Hypertension, 2022,79:562-574. doi:10.1161/HYPERTENSIONAHA.121.18105. |
[15] | Chen M, Wu Q, Shao N, et al. The significance of CD16+ monocytes in the occurrence and development of chronic thromboembolic pulmonary hypertension: insights from single-cell RNA sequencing[J]. Front Immunol, 2024,15:1446710.doi:10.3389/fimmu.2024.1446710. |
[16] | Eichstaedt CA. Genetically identifying the “Thromboembolic” in chronic thromboembolic pulmonary hypertension[J]. Am J Respir Crit Care Med, 2024,209:1425-1426. doi:10.1164/rccm.202402-0471ED. |
[17] | Yaoita N, Satoh K, Satoh T, et al. Identification of the novel variants in patients with chronic thromboembolic pulmonary hypertension[J]. J Am Heart Assoc, 2020,9:e015902. doi:10.1161/JAHA.120.015902. |
[18] | Zhang Y, Zhang M, Yang H, et al. Serum proteome profiling reveals heparanase as a candidate biomarker for chronic thromboembolic pulmonary hypertension[J]. iScience, 2024,27:108930.doi:10.1016/j.isci.2024.108930. |
[19] | Xu WJ, Wang S, Zhao QH, et al. Serum ASGR2 level: an efficacy biomarker for balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension[J]. Front Immunol, 2024,15:1402250. doi:10.3389/fimmu.2024.1402250. |
[20] | Nukala SB, Tura-Ceide O, Aldini G, et al. Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension[J]. Sci Rep, 2021,11:5583. doi:10.1038/s41598-021-85004-z. |
[21] | Swietlik EM, Ghataorhe P, Zalewska KI, et al. Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension[J]. Eur Respir J, 2021,57:2003201.doi:10.1183/13993003.03201-2020. |
[22] | Liu J, Chang Z, Zhang Z, et al. Clinical features and metabolic reprogramming of atherosclerotic lesions in patients with chronic thromboembolic pulmonary hyperten-sion[J]. Front Cardiovasc Med, 2022,9:1023282.doi:10.3389/fcvm.2022.1023282. |
[23] | Carlsen J, Henriksen HH, Marin de Mas I, et al. An explorative metabolomic analysis of the endothelium in pulmonary hypertension[J]. Sci Rep, 2022,12:13284. doi:10.1038/s41598-022-17374-x. |
[24] | Argelaguet R, Velten B, Arnol D, et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets[J]. Mol Syst Biol, 2018,14:e8124. doi:10.15252/msb.20178124. |
[25] | Baysoy A, Bai Z, Satija R, et al. The technological landscape and applications of single-cell multi-omics[J]. Nat Rev Mol Cell Biol,2023,24:695-713. doi:10.1038/s41580-023-00615-w. |
[1] | WEI Jing, SUN Wei. Clinical applications of urine proteome based on mass spectrometry [J]. Basic & Clinical Medicine, 2025, 45(8): 982-991. |
[2] | CHEN Lingyun, CHEN Wensong, SUN Qinqiang, ZI Jin. Progress in urinary metabolomics research technologies and applications in cancer diagnosis [J]. Basic & Clinical Medicine, 2025, 45(8): 999-1009. |
[3] | LIU Xiang, WEI Jing. Quality control of urine proteome based on liquid chromatography-mass spectrometry [J]. Basic & Clinical Medicine, 2025, 45(8): 992-998. |
[4] | WANG Aiwei, LIU Jiaqi, LIU Xiaoyan, SUN Haidan, GUO Zhengguang, HE Chengyan, SUN Wei. Non-targeted metabolomics screening for serum biomarkers in colorectal cancer patients [J]. Basic & Clinical Medicine, 2025, 45(6): 793-799. |
[5] | DENG Yuanrui, WANG Xiaojian. Metabolomics of pulmonary hypertension: from pathological mechanisms to therapeutic targets [J]. Basic & Clinical Medicine, 2024, 44(8): 1074-1079. |
[6] | YU Zhixin, MANG Xinyu, ZOU Dingfeng, MIAO Shiying, SONG Wei, LI Kai. Effects of intraperitoneal injection of busulfan on metabolic characteristics of spermatogonial stem cells [J]. Basic & Clinical Medicine, 2024, 44(6): 793-799. |
[7] | WEI Bin, DUAN Hongjie, CHAI Jiake. Research progress of metabolomics in the diagnosis and treatment of severe injuries [J]. Basic & Clinical Medicine, 2024, 44(4): 562-567. |
[8] | MA Guoying, Jiazireya·ZAIYINATI, LI Suli, GUO Yanying. Analysis of differentially expressed proteins in Hashimoto thyroiditis patients with obesity by serum-based proteomics [J]. Basic & Clinical Medicine, 2023, 43(9): 1375-1382. |
[9] | MIAO Haozhen, TAO Lei, SONG Bingjie, ZHANG Qijun. Progress on the role of metabolic reprogramming in the occurrence of atrial fibrillation [J]. Basic & Clinical Medicine, 2023, 43(11): 1718-1722. |
[10] | XIAO Xiao-lian, LIU Xiao-yan, ZHU Wen-feng, YANG Ye-hong, YANG Jun-tao, SUN Wei. Comparison of two acquisition modes in urine metabolomics by untargeted mass spectrometry [J]. Basic & Clinical Medicine, 2021, 41(5): 729-734. |
[11] | ZHENG Shu-xin, ZHAO Min-di, SHAO Chen, SUN Hai-dan, LIU Xiao-yan, GUO Zheng-guang, SUN Wei. Screening aging related proteins in urine from healthy adults [J]. Basic & Clinical Medicine, 2021, 41(4): 528-532. |
[12] | WANG Nai-li, MENG Shu, QIU Wen-ying, WANG Xia. Differential protein profiling in brain and spinal arteriovenous malformations [J]. Basic & Clinical Medicine, 2021, 41(11): 1570-1576. |
[13] | HE Quan, LIU Dan-yu, YE Jun, ZHANG Yan-li, ZHU Hua-dong, JIANG Cheng-yu, XU Jun. Predictive research of 5-hydroxytryptamine in severity of severe community-acquired pneumonia [J]. Basic & Clinical Medicine, 2020, 40(9): 1195-1200. |
[14] | YE Fei, YU Ying. Advances in radiogenomics in precision radiotherapy [J]. Basic & Clinical Medicine, 2020, 40(5): 696-700. |
[15] | LI Jing, ZHOU Dong-dong, SUN Wei. Effect of centrifugal conditions on urine protein extraction by acetone precipitation method [J]. Basic & Clinical Medicine, 2020, 40(2): 229-234. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||