[1] |
Kim HS, Yoo HJ, Lee KM, et al. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis[J]. Respirology, 2021, 26: 255-263.
|
[2] |
Galdino de Souza D, Santos DS, et al. Fish oil nanoemulsion supplementation attenuates bleomycin-induced pulmonary fibrosis BALB/c mice[J]. Nanomaterials(Basel), 2022, 12: 1683. doi: 10.3390/nano12101683.
|
[3] |
Sunaga H, Matsui H, Ueno M, et al. Deranged fatty acid composition causes pulmonary fibrosis in Elovl6-deficient mice[J]. Nat Commun, 2013, 4: 2563. doi: 10.1038/ncomms3563.
|
[4] |
Romero F, Hong X, Shah D, et al. Lipid synthesis is required to resolve endoplasmic reticulum stress and limit fibrotic responses in the lung.[J]. Am J Respir Cell Mol Biol, 2018, 59: 225-236.
|
[5] |
Shin H, Park S, Hong J, et al. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice[J]. Sci Rep, 2023, 13: 9044. doi: 10.1038/s41598-023-36009-3.
|
[6] |
Jung MY, Kang JH, Hernandez DM, et al. Fatty acid synthase is required for profibrotic TGF-β signaling[J]. Faseb J, 2018, 32: 3803-3815.
|
[7] |
Kwak D, Bradley PB, Subbotina N, et al. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid[J]. Respir Res, 2023, 24: 314. doi: 10.1186/s12931-023-02629-6.
|
[8] |
Pei Z, Fraisl P, Shi X, et al. Very long-chain acyl-CoA synthetase 3: overexpression and growth dependence in lung cancer[J]. PLoS One, 2013, 8: e69392. doi: 10.1371/journal.pone.0069392.
|
[9] |
Yang S, Kobayashi S, Sekino K, et al. Fatty acid-binding protein 5 controls lung tumor metastasis by regulating the maturation of natural killer cells in the lung[J]. FEBS Lett, 2021, 595: 1797-1805.
|
[10] |
Speca S, Dubuquoy C, Rousseaux C, et al. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro[J]. PLoS One, 2021, 16: e0257281. doi: 10.1371/journal.pone.0257281.
|
[11] |
Liu Y, Chen S, Yu L, et al. Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation[J]. Int Immunopharmacol, 2022, 108: 108728. doi: 10.1016/j.intimp.2022.108728.
|
[12] |
Koudelka A, Cechova V, Rojas M, et al. Fatty acid nitroalkene reversal of established lung fibrosis[J]. Redox Biol, 2022, 50: 102226. doi: 10.1016/j.redox.2021.102226.
|
[13] |
Wei A, Gao Q, Chen F, et al. Inhibition of DNA methylation de-represses peroxisome proliferator-activated receptor-γ and attenuates pulmonary fibrosis[J]. Br J Pharmacol, 2022, 179: 1304-1318.
|
[14] |
Zhang Y, Li T, Pan M, et al. SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism[J]. J Transl Med, 2022, 20: 222. doi: 10.1186/s12967-022-03408-5.
|
[15] |
Wu W, Zhang G, Qiu L, et al. Contribution of adiponectin/carnitine palmityl transferase 1A-mediated fatty acid metabolism during the development of idiopathic pulmonary fibrosis[J]. Oxid Med Cell Longev, 2022, 2022: 5265616. doi: 10.1155/2022/5265616.
|
[16] |
Gu L, Surolia R, Larson-Casey JL, et al. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling[J]. Cell Death Differ, 2022, 29: 118-132.
|
[17] |
Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD(2) and TXA(2)[J]. Theranostics, 2021, 11: 2381-2394.
|
[18] |
Suzuki T, Kropski JA, Chen J, et al. Thromboxane-prostanoid receptor signaling drives persistent fibroblast activation in pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2022, 206: 596-607.
|
[19] |
Fortier SM, Penke LR, King D, et al. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions[J]. JCI Insight, 2021, 6: e144799. doi: 10.1172/jci.insight.144799.
|
[20] |
Fang L, Chen WC, Jaksch P, et al. Treprostinil reconstitutes mitochondrial organisation and structure in idiopathic pulmonary fibrosis cells[J]. Int J Mol Sci, 2023, 24: 12148. doi: 10.3390/ijms241512148.
|
[21] |
New ML, White CM, McGonigle P, et al. Prostacyclin and EMT pathway markers for monitoring response to lung cancer chemoprevention[J]. Cancer Prev Res(Phila), 2018, 11: 643-654.
|
[22] |
Chen HC, Chiou HC, Tsai ML, et al. Effects of montelukast on arsenic-induced epithelial-mesenchymal transi-tion and the role of reactive oxygen species production in human bronchial epithelial cells[J]. Front Pharmacol, 2022, 13: 877125. doi: 10.3389/fphar.2022.877125.
|
[23] |
Nathan SD, Waxman A, Rajagopal S, et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hyperten-sion: a post-hoc analysis of the INCREASE study[J]. Lancet Respir Med, 2021, 9: 1266-1274.
|
[24] |
Waxman A, Restrepo-Jaramillo R, Thenappan T, et al. Long-term inhaled treprostinil for pulmonary hypertension due to interstitial lung disease: INCREASE open-label extension study[J]. Eur Respir J, 2023, 61: 2202414. doi: 10.1183/13993003.02414-2022.
|