[1] 2024 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2024, 20: 3708-3821. [2] Livingston G, Huntley J, Liu KY, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission[J]. Lancet, 2024, 404: 572-628. [3] Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179: 312-339. [4] Barthélemy NR, Salvadó G, Schindler SE, et al. Highly accurate blood test for Alzheimer's disease is similar or superior to clinical cerebrospinal fluid tests[J]. Nat Med, 2024, 30: 1085-1095. [5] Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset alzheimer's disease revisited[J]. Alzheimers Dement, 2016, 12: 733-748. [6] Wingo TS, Lah JJ, Levey AI, et al. Autosomal recessive causes likely in early-onset alzheimer disease[J]. Arch Neurol, 2012, 69: 59-64. [7] Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics[J]. Nat Rev Drug Discov, 2022, 21: 306-318. [8] Therriault J, Benedet al, Pascoal TA, et al. APOEε4 potentiates the relationship between amyloid-β and tau pathologies[J]. Mol Psychiatry, 2021, 26: 5977-5988. [9] Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer's disease and related dementias[J]. Nat Genet, 2022, 54: 412-436. [10] Yang X, Wen J, Yang H, et al. Functional characteriza-tion of Alzheimer's disease genetic variants in microglia[J]. Nat Genet, 2023, 55: 1735-1744. [11] Zhan L, Li J, Jew B, et al. Rare variants in the endocytic pathway are associated with Alzheimer's disease, its related phenotypes, and functional consequences[J]. PLoS Genet, 2021, 17: e1009772. doi:10.1371/journal.pgen.1009772. [12] Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol. 2021, 20: 68-80. [13] Wightman DP, Jansen IE, Savage JE, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease[J]. Nat Genet, 2021, 53: 1276-1282. [14] Qazi TJ,Quan Z, Mir A, et al. Epigenetics in Alzheimer's disease: perspective of DNA methylation[J]. Mol Neurobiol, 2018, 55: 1026-1044. [15] Santana DA, Smith MAC, Chen ES. Histone modifications in Alzheimer's disease[J]. Genes (Basel), 2023, 14: 347.doi:10.3390/genes14020347. [16] Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2017, 12: 89. doi:10.1186/s132024-017-0231-7. [17] Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic Meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing[J]. Nat Genet, 2019, 51: 414-430. [18] Tomizawa I, Chiu YW, Hori Y, et al. Identification of novel regulators involved in AD pathogenesis using the CRISPR-Cas9 system[J]. Nihon Yakurigaku Zasshi, 2023, 158: 21-25. [19] Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: new hope for Alzheimer's disease therapeutics[J]. J Adv Res, 2022, 40: 207-221. [20] Yeapuri P, Machhi J, Lu Y, et al. Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice[J]. Mol Neurodegener, 2023, 18: 97.doi:10.1186/s13024-023-00692-7. [21] Raffaele I, Cipriano GL, Anchesi I, et al. CRISPR/Cas9 and iPSC-based therapeutic approaches in Alzheimer's disease[J]. Antioxidants (Basel), 2025, 14: 781.doi:10.3390/antiox14070781. [22] Adiga D, Eswaran S, Srinath S, et al. Noncoding RNAs in Alzheimer's disease: overview of functional and therapeutic significance[J]. Curr Top Med Chem, 2024, 24: 1615-1634. [23] Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics[J]. Nat Rev Drug Discov, 2022, 21: 306-318. [24] Makin S. The amyloid hypothesis on trial[J]. Nature, 2018, 559: S4-S7. [25] Sasaguri H, Hashimoto S, Watamura N, et al. Recent advances in the modeling of Alzheimer's disease[J]. Front Neurosci, 2022, 16: 807473.doi:10.3389/fnins.2022.807473. |