[1]Fernie AR, Carrari F, Sweetlove LJ. Respiratory meta-bolism: glycolysis, the TCA cycle and mitochondrial electron transport[J]. Curr Opin Plant Biol, 2004, 7:254-261. [2]Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease[J]. Cell Mol Life Sci, 2014, 71:2577-2604. [3]Lennicke C, Rahn J, Lichtenfels R, et al. Hydrogen peroxide-production, fate and role in redox signaling of tumor cells[J]. Cell Commun Signal, 2015, 13:39. doi: 10.1186/s12964-015-0118-6. [4]de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60:R115-R130. [5]Pei JF, Li XK, Li WQ, et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks[J]. Nat Cell Biol, 2019, 21:1553-1564. [6]Khan M, Gasser S. Generating primary fibroblast cultures from mouse ear and tail tissues[J]. J Vis Exp, 2016, 10:53565. doi: 10.3791/53565. [7]Durkin ME, Qian X, Popescu NC, et al. Isolation of mouse embryo fibroblasts[J]. Bio Protoc, 2013, 3:e908. doi: 10.21769/bioprotoc.908. [8]Xie N, Zhang L, Gao W, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential[J]. Signal Transduct Target Ther, 2020, 5:227. doi: 10.1038/s41392-020-00311-7. [9]Tafazoli S, Wright JS, O'Brien PJ. Prooxidant and antioxidant activity of vitamin E analogues and troglitazone[J]. Chem Res Toxicol, 2005, 18:1567-1574. [10]Peek CB, Affinati AH, Ramsey KM, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabo-lism in mice[J]. Science, 2013, 342:1243417. doi: 10.1126/science.1243417. [11]Brazill JM, Li C, Zhu Y, et al. NMNAT: It's an NAD+ synthase… It's a chaperone… It's a neuroprotector[J]. Curr Opin Genet Dev, 2017, 44:156-162. |