[1] Chen S, Kuhn M, Prettner K, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study[J]. Lancet Glob Health, 2023, 11: e1183-e1193. [2] Ahmad S, Manzoor S, Siddiqui S, et al. Epigenetic underpinnings of inflammation: connecting the dots between pulmonary diseases, lung cancer and COVID-19[J]. Semin Cancer Biol, 2022,83:384-398. [3] Chen M, Chen Z, Huang D, et al. Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway[J]. Pulm Pharmacol Ther, 2020, 65:102000. doi: 10.1016/j.pupt.2021.102000. [4] Lee K, Woo J, Kim JY, et al. Cigarette smoke extract-induced downregulation of p300 is responsible for the impaired inflammatory cytokine response of macrophages[J]. Cell Signal, 2021, 85:110050. doi: 10.1016/j.cellsig.2021.110050. [5] Hodge G, Tran HB, Reynolds PN, et al. Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes[J]. Ther Adv Respir Dis, 2020,14:1753466620905280. doi: 10.1177/1753466620905280. [6] Zhang J, Xu Z, Kong L, et al. miRNA-486-5p promotes COPD progression by targeting HAT1 to regulate the TLR4-triggered inflammatory response of alveolar macrophages[J]. Int J Chron Obstruct Pulmon Dis, 2020,15:2991-3001. [7] Guo Y, Liu Q, Zheng Z, et al. Genetic association of inflammatory marker GlycA with lung function and respiratory diseases[J]. Nat Commun, 2024,15:3751. doi: 10.1038/s41467-024-47845-w. [8] Li C, Chen F, Lin L, et al. CSE triggers ferroptosis via SIRT4-mediated GNPAT deacetylation in the pathogenesis of COPD[J]. Respir Res, 2023,24:301. doi: 10.1186/s12931-023-02613-0. [9] Montero Magalló P, Roger Laparra I, Estornut Navarro C, et al. Influence of dose and exposition time in the effectiveness of N-Acetyl-L-cysteine treatment in A549 human epithelial cells[J]. Heliyon, 2023, 9:e15613. doi: 10.1016/j.heliyon.2023.e15613. [10] Son ES, Park J, Kim YJ, et al. Effects of antioxidants on oxidative stress and inflammatory responses of human bronchial epithelial cells exposed to particulate matter and cigarette smoke extract[J]. Toxicol In Vitro, 2020, 67:104883. doi: 10.1016/j.tiv.2020.104883. [11] Lee K, Woo J, Kim J, et al. YPL-001 shows various beneficial effects against cigarette smoke extract-induced emphysema formation: anti-inflammatory, anti-oxidative, and anti-apoptotic effects[J]. Antioxidants (Basel), 2022 ,12:15. doi: 10.3390/antiox12010015. [12] Hung JY, Chiang SR, Tsai MJ, et al. LIGHT is a crucial mediator of airway remodeling[J]. J Cell Physiol, 2015, 230:1042-1053. [13] Zeng M, Zhang X, Xing W, et al. Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway[J]. Toxicol Lett, 2022, 359: 31-45. [14] Wu H, Ma H, Wang L, et al. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1α[J]. Int J Biol Sci, 2022,18:661-674. [15] Tao L, Lu X, Fu Z, et al. Tong Sai granule improves AECOPD via regulation of MAPK-SIRT1-NF-κB pathway and cellular senescence alleviation[J]. J Ethnopharmacol, 2023,314:116622. doi: 10.1016/j.jep.2023.116622. [16] Zhang X, Li W, Zhang J, et al. Roles of sirtuin family members in chronic obstructive pulmonary disease[J]. Respir Res, 2022,23:66. doi: 10.1186/s12931-022-01986-y. [17] Barnes PJ. Small airway fibrosis in COPD[J]. Int J Biochem Cell Biol, 2019,116:105598. doi: 10.1016/j.biocel.2019.105598. [18] Wu X, Ciminieri C, Bos I S T, et al. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche[J]. Environ Pollut, 2022, 305:119292. doi: 10.1016/j.envpol.2022.119292. [19] Zheng G, Li C, Chen X, et al. HDAC9 inhibition reduces skeletal muscle atrophy and enhances regeneration in mice with cigarette smoke-induced COPD[J]. Biochim Biophys Acta Mol Basis Dis, 2024,1870:167023. doi:10.1016/j.bbadis.2024.167023. [20] Zwinderman MR, de Weerd S, Dekker FJ. Targeting HDAC complexes in asthma and COPD[J]. Epigenomes, 2019, 3:19. doi: 10.3390/epigenomes3030019. [21] Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2013, 131: 636-645. [22] Leus NG, Zwinderman MR, Dekker FJ. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation[J]. Curr Opin Chem Biol, 2016, 33: 160-168. [23] Cazzola M, Page CP, Wedzicha JA, et al. Use of thiols and implications for the use of inhaled corticosteroids in the presence of oxidative stress in COPD[J]. Respir Res, 2023, 24:194. doi: 10.1186/s12931-023-02500-8. [24] Papi A, Zheng J, Criner GJ, et al. Impact of smoking status and concomitant medications on the effect of high-dose N-acetylcysteine on chronic obstructive pulmonary disease exacerbations: a post-hoc analysis of the PANTHEON study[J]. Respir Med, 2019, 147: 37-43. [25] Lewis P, Sheehan D, Soares R, et al. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle[J]. Front Physiol, 2015, 6:122. doi: 10.3389/fphys.2015.00122. |