基础医学与临床 ›› 2023, Vol. 43 ›› Issue (4): 547-553.doi: 10.16352/j.issn.1001-6325.2023.04.0547
鲁益朦, 谭季春*
收稿日期:
2022-09-02
修回日期:
2022-12-26
出版日期:
2023-04-05
发布日期:
2023-04-03
通讯作者:
*tjczjh@163.com
基金资助:
LU Yimeng, TAN Jichun*
Received:
2022-09-02
Revised:
2022-12-26
Online:
2023-04-05
Published:
2023-04-03
Contact:
*tjczjh@163.com
摘要: 宫腔粘连(IUA)是一种影响女性生殖健康的难治性疾病。随着医学的发展,对其病因学的研究不断深入,目前较明确可导致IUA的高危因素有:妊娠后清宫术、剖宫产术后、滋养细胞疾病清宫术、产后出血刮宫术、诊断性刮宫、宫腔镜手术、宫内节育器放置、生殖道结核感染、米勒管畸形等。子宫内膜纤维化是IUA的主要病理特征。多种信号刺激不同的信号通路后,引起体内多种生长因子及细胞因子相互作用共同促进纤维化的发展,最终导致IUA的发生。目前临床上IUA的治疗和预防并不理想,尤其是中重度IUA。因此,研究IUA的发病机制将有助于临床实行靶向治疗。本文就近年来IUA的病因学研究和分子机制研究新进展进行综述。
中图分类号:
鲁益朦, 谭季春. 宫腔粘连发病的分子机制研究进展[J]. 基础医学与临床, 2023, 43(4): 547-553.
LU Yimeng, TAN Jichun. Advances in molecular mechanisms of intrauterine adhesions[J]. Basic & Clinical Medicine, 2023, 43(4): 547-553.
[1] | Asherman JG.Amenorrhoea traumatica (atretica)[J].J Obstet Gynaecol Br Emp, 1948, 55: 23-30. doi:10.1111/j.1471-0528.1948.tb07045.x. |
[2] | 中华医学会妇产科学分会. 宫腔粘连临床诊疗中国专家共识[J]. 中华妇产科杂志, 2015, 50: 881-887. |
[3] | Ma J, Zhan H, Li W, et al. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion[J]. Biomater Res, 2021, 25: 40. doi:10.1186/s40824-021-00242-6. |
[4] | Schenker JG, Margalioth EJ. Intrauterine adhesions: an updated appraisal[J]. Fertil Steril, 1982, 37: 593-610. doi:10.1016/s0015-0282(16)46268-0. |
[5] | Wang Y, Zhao Y, Ge Y, et al. Reproductive outcomes and reproductive tract microbiota shift in women with moderate-to-severe intrauterine adhesions following 30-day post-hysteroscopic placement of balloon stents or intrauterine contraceptive devices: A randomized controlled trial[J]. EClinicalMedicine, 2022, 43: 101200. doi:10.1016/j.eclinm.2021.101200. |
[6] | McCausland AM, McCausland VM. Partial rollerball endometrial ablation: a modification of total ablation to treat menorrhagia without causing complications from intrauterine adhesions[J]. Am J Obstet Gynecol, 1999, 180: 1512-1521. doi:10.1016/s0002-9378(99)70047-5. |
[7] | Ikemoto Y, Nagai S, Tejima K, et al. Postsurgical intrauterine adhesions after hysteroscopic myomectomy using the myoma pseudocapsule preservation technique evaluated bv second-look hysteroscopy: a retrospective comparative study[J]. J Minim Invasive Gynecol, 2022, 29: 998-1002. doi:10.1016/j.jmig.2022.05.004. |
[8] | Huang WJ, Tang XX. Virus infection induced pulmonary fibrosis[J]. J Transl Med, 2021, 19: 496. doi:10.1186/s12967-021-03159-9. |
[9] | Xiang R, Li M, Gu Z, et al. Chronic endometritis positively correlates with the aggravation of intrauterine adhesions but has limited effects on reproductive prognosis with antibiotic application[J]. Int J Gynaecol Obstet, 2022. doi:10.1002/ijgo.14434. |
[10] | Polishuk WZ, Anteby SO, Weinstein D. Puerperal endometritis and intrauterine adhesions[J]. Int Surg, 1975, 60: 418-420.. |
[11] | Tal R, Lawal T, Granger E, et al. Genital tuberculosis screening at an academic fertility center in the United States[J]. Am J Obstet Gynecol, 2020, 223: 737.e1-737.e10. doi:10.1016/j.ajog.2020.05.045. |
[12] | Stillman RJ, Asarkof N. Association between mullerian duct malformations and Asherman syndrome in infertile women[J]. Obstet Gynecol, 1985, 65: 673-677.. |
[13] | Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12: 420. doi:10.1186/s13287-021-02499-z. |
[14] | Yu C, Xiong C, Tang J, et al. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression[J]. Theranostics, 2021, 11: 2706-2721. doi:10.7150/thno.48679. |
[15] | Chen H, Chen H, Liang J, et al. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency[J]. Exp Mol Med, 2020, 52: 130-151. doi:10.1038/s12276-019-0371-7. |
[16] | Zhang Q, Qian D, Tang DD, et al. Glabridin from glycyrrhiza glabra possesses a therapeutic role against keloid via attenuating PI3K/Akt and transforming growth factor-β1/SMAD signaling pathways[J]. J Agric Food Chem, 2022, 70: 10782-10793. doi:10.1021/acs.jafc.2c02045. |
[17] | Stolfi C, Troncone E, Marafini I, et al. Role of TGF-Beta and Smad7 in gut inflammation, fibrosis and cancer[J]. Biomolecules, 2020, 11: 17. doi:10.3390/biom11010017. |
[18] | Salma U, Xue M, Ali Sheikh MS, et al. Role of transforming growth factor-β1 and Smads signaling pathway in intrauterine adhesion[J]. Mediators Inflamm, 2016, 2016: 4158287. doi:10.1155/2016/4158287. |
[19] | Wang H, Che J, Cui K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo[J]. Phytomedicine, 2021, 88: 153609. doi:10.1016/j.phymed.2021.153609. |
[20] | de Souza Basso B, Haute GV, Ortega-Ribera M, et al. Methoxyeugenol deactivates hepatic stellate cells and attenuates liver fibrosis and inflammation through a PPAR-γ and NF-κB mechanism[J]. J Ethnopharmacol, 2021, 280: 114433. doi:10.1016/j.jep.2021.114433. |
[21] | Zohny MH, Cavalu S, Youssef ME, et al. Coomassie brilliant blue G-250 dye attenuates bleomycin-induced lung fibrosis by regulating the NF-κB and NLRP3 crosstalk: A novel approach for filling an unmet medical need[J]. Biomed Pharmacother, 2022, 148: 112723. doi:10.1016/j.biopha.2022.112723. |
[22] | Xue X, Chen Q, Zhao G, et al. The Overexpression of TGF-β and CCN2 in Intrauterine Adhesions Involves the NF-κB Signaling Pathway[J]. PLoS One, 2015, 10: e0146159. doi:10.1371/journal.pone.0146159. |
[23] | Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenera-tive medicine[J]. Nat Rev Drug Discov, 2020, 19: 480-494. doi:10.1038/s41573-020-0070-z. |
[24] | Mia MM, Cibi DM, Ghani SABA, et al. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function[J]. Cardiovasc Res, 2022, 118: 1785-1804. doi:10.1093/cvr/cvab205. |
[25] | Zhu HY, Ge TX, Pan YB, et al. Advanced role of Hippo signaling in endometrial fibrosis: implications for intrauterine adhesion[J]. Chin Med J (Engl), 2017, 130: 2732-2737. doi:10.4103/0366-6999.218013. |
[26] | Shen J, Yan J, Wei X, et al. Gant61 ameliorates CCl4-induced liver fibrosis by inhibition of Hedgehog signaling activity[J]. Toxicol Appl Pharmacol, 2020, 387: 114853. doi:10.1016/j.taap.2019.114853. |
[27] | Yang X, Sun W, Jing X, et al. C/EBP homologous protein promotes Sonic Hedgehog secretion from type Ⅱ alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis[J]. Respir Res, 2022, 23: 86. doi:10.1186/s12931-022-02012-x. |
[28] | Lin X, Zhang Y, Pan Y, et al. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2[J]. Biol Reprod, 2018, 98: 480-490. doi:10.1093/biolre/ioy005. |
[29] | Wei C, Pan Y, Zhang Y, et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death Dis, 2020, 11: 755. doi:10.1038/s41419-020-02956-2. |
[30] | Wonnacott A, Denby L, Coward RJM, et al. MicroRNAs and their delivery in diabetic fibrosis[J]. Adv Drug Deliv Rev, 2022, 182: 114045. doi:10.1016/j.addr.2021.114045. |
[31] | Ye J, Lin Y, Yu Y, et al. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis[J]. J Transl Med, 2020, 18: 445. doi:10.1186/s12967-020-02577-5. |
[32] | Tan Q, Xia D, Ying X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion[J]. Int J Stem Cells, 2020, 13: 414-423. doi:10.15283/ijsc20049. |
[33] | Chen Y, Sun D, Shang D, et al. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endome-trial epithelial cells[J]. Open Med (Wars), 2022, 17: 518-526. doi:10.1515/med-2022-0424. |
[34] | Sun D, Jiang Z, Chen Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling[J]. Bioengineered, 2021, 12: 12891-12904. doi:10.1080/21655979.2021.2006976. |
[35] | Ye S, Luo W, Khan ZA, et al. Celastrol attenuates angiotensin Ⅱ-induced cardiac remodeling by targeting STAT3[J]. Circ Res, 2020, 126: 1007-1023. doi:10.1161/CIRCRESAHA.119.315861. |
[36] | Bensalah M, Muraine L, Boulinguiez A, et al. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis[J]. J Cachexia Sarcopenia Muscle, 2022, 13: 1771-1784. doi:10.1002/jcsm.12974. |
[37] | Strieter RM, Gomperts BN, Keane MP. The role of CXC chemokines in pulmonary fibrosis[J]. J Clin Invest, 2007, 117: 549-556. doi:10.1172/JCI30562. |
[38] | Wilkinson-Berka JL. Angiotensin and diabetic retinopathy[J]. Int J Biochem Cell Biol, 2006, 38: 752-765. doi:10.1016/j.biocel.2005.08.002. |
[39] | Zhang M, Sui W, Xing Y, et al. Angiotensin Ⅳ attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis[J]. Theranostics, 2021, 11: 8624-8639. doi:10.7150/thno.48561. |
[1] | 李佳铭, 杨超, 麻莉. 防治子宫内膜损伤的策略[J]. 基础医学与临床, 2024, 44(9): 1308-1313. |
[2] | 刘晶华, 卢琳. 肾上腺皮质癌基因及分子机制[J]. 基础医学与临床, 2024, 44(6): 748-752. |
[3] | 田亚婷, 张芳, 张博翔, 李甜. 马里苷减轻糖尿病小鼠心肌纤维化[J]. 基础医学与临床, 2024, 44(1): 51-56. |
[4] | 查娜, 郝丹丹, 李天柱. microRNAs通过Hippo通路抑制肝细胞癌发生的研究进展[J]. 基础医学与临床, 2023, 43(12): 1871-1875. |
[5] | 马聪聪, 刘洋, 吕洋, 王海萍. 线粒体自噬在心肌缺血/再灌注损伤中的作用研究进展[J]. 基础医学与临床, 2023, 43(11): 1723-1727. |
[6] | 黄驿胜, 叶启文, 王竞枫. miR-203a-3p抑制人肝癌细胞系增殖[J]. 基础医学与临床, 2023, 43(1): 87-94. |
[7] | 姜艳玲, 丁丽, 李发余, 解世雷, 张一琼. 榆栀止血颗粒减轻宫腔粘连大鼠子宫内膜纤维化[J]. 基础医学与临床, 2022, 42(8): 1220-1224. |
[8] | 张杨, 孙弯弯, 陆丽丹, 冯晓玲. 细胞自噬与凋亡相互作用分子机制的研究进展[J]. 基础医学与临床, 2021, 41(9): 1342-1346. |
[9] | 贾春松, 赵彦坡, 尚振华, 邢添瑛, 欧彤文. RNA干扰降低膀胱TGF-β1表达能够改善脊髓损伤大鼠的膀胱功能和纤维化[J]. 基础医学与临床, 2021, 41(7): 1007-1012. |
[10] | 郭希, 赖莘秀, 杨媚滟, 李峤桢, 王思行, 宋章永. 抑制侵袭性真菌的新型分子及其作用靶点研究进展[J]. 基础医学与临床, 2021, 41(6): 904-908. |
[11] | 吴娜, 王东, 李京敏, 白咸勇. 羟基红花黄色素A抑制人肝癌细胞系Huh7发生上皮-间质转化[J]. 基础医学与临床, 2021, 41(10): 1423-1427. |
[12] | 周杰, 黄英辉. 核转位在肿瘤发生发展中的研究进展[J]. 基础医学与临床, 2020, 40(8): 1119-1123. |
[13] | 陈民佳, 杜娟, 袁丹凤, 张蜀, 黄宏, 朱方强. 姜黄素抑制TGF-β1诱导的人肾小管上皮细胞系表型转化[J]. 基础医学与临床, 2020, 40(1): 48-53. |
[14] | 刘恩令 刘铮 周玉秀 张冬红 陈梅. miR-185在妊娠合并系统性红斑狼疮患者的T细胞异常甲基化中的作用及分子机制[J]. 基础医学与临床, 2018, 38(9): 1280-1285. |
[15] | 李莉 陈巧媛. 感染和炎性反应与早产发病机制研究进展[J]. 基础医学与临床, 2018, 38(9): 1348-1351. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 566
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部