[1] |
Asherman JG.Amenorrhoea traumatica (atretica)[J].J Obstet Gynaecol Br Emp, 1948, 55: 23-30. doi:10.1111/j.1471-0528.1948.tb07045.x.
|
[2] |
中华医学会妇产科学分会. 宫腔粘连临床诊疗中国专家共识[J]. 中华妇产科杂志, 2015, 50: 881-887.
|
[3] |
Ma J, Zhan H, Li W, et al. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion[J]. Biomater Res, 2021, 25: 40. doi:10.1186/s40824-021-00242-6.
|
[4] |
Schenker JG, Margalioth EJ. Intrauterine adhesions: an updated appraisal[J]. Fertil Steril, 1982, 37: 593-610. doi:10.1016/s0015-0282(16)46268-0.
|
[5] |
Wang Y, Zhao Y, Ge Y, et al. Reproductive outcomes and reproductive tract microbiota shift in women with moderate-to-severe intrauterine adhesions following 30-day post-hysteroscopic placement of balloon stents or intrauterine contraceptive devices: A randomized controlled trial[J]. EClinicalMedicine, 2022, 43: 101200. doi:10.1016/j.eclinm.2021.101200.
|
[6] |
McCausland AM, McCausland VM. Partial rollerball endometrial ablation: a modification of total ablation to treat menorrhagia without causing complications from intrauterine adhesions[J]. Am J Obstet Gynecol, 1999, 180: 1512-1521. doi:10.1016/s0002-9378(99)70047-5.
|
[7] |
Ikemoto Y, Nagai S, Tejima K, et al. Postsurgical intrauterine adhesions after hysteroscopic myomectomy using the myoma pseudocapsule preservation technique evaluated bv second-look hysteroscopy: a retrospective comparative study[J]. J Minim Invasive Gynecol, 2022, 29: 998-1002. doi:10.1016/j.jmig.2022.05.004.
|
[8] |
Huang WJ, Tang XX. Virus infection induced pulmonary fibrosis[J]. J Transl Med, 2021, 19: 496. doi:10.1186/s12967-021-03159-9.
|
[9] |
Xiang R, Li M, Gu Z, et al. Chronic endometritis positively correlates with the aggravation of intrauterine adhesions but has limited effects on reproductive prognosis with antibiotic application[J]. Int J Gynaecol Obstet, 2022. doi:10.1002/ijgo.14434.
|
[10] |
Polishuk WZ, Anteby SO, Weinstein D. Puerperal endometritis and intrauterine adhesions[J]. Int Surg, 1975, 60: 418-420..
|
[11] |
Tal R, Lawal T, Granger E, et al. Genital tuberculosis screening at an academic fertility center in the United States[J]. Am J Obstet Gynecol, 2020, 223: 737.e1-737.e10. doi:10.1016/j.ajog.2020.05.045.
|
[12] |
Stillman RJ, Asarkof N. Association between mullerian duct malformations and Asherman syndrome in infertile women[J]. Obstet Gynecol, 1985, 65: 673-677..
|
[13] |
Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12: 420. doi:10.1186/s13287-021-02499-z.
|
[14] |
Yu C, Xiong C, Tang J, et al. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression[J]. Theranostics, 2021, 11: 2706-2721. doi:10.7150/thno.48679.
|
[15] |
Chen H, Chen H, Liang J, et al. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency[J]. Exp Mol Med, 2020, 52: 130-151. doi:10.1038/s12276-019-0371-7.
|
[16] |
Zhang Q, Qian D, Tang DD, et al. Glabridin from glycyrrhiza glabra possesses a therapeutic role against keloid via attenuating PI3K/Akt and transforming growth factor-β1/SMAD signaling pathways[J]. J Agric Food Chem, 2022, 70: 10782-10793. doi:10.1021/acs.jafc.2c02045.
|
[17] |
Stolfi C, Troncone E, Marafini I, et al. Role of TGF-Beta and Smad7 in gut inflammation, fibrosis and cancer[J]. Biomolecules, 2020, 11: 17. doi:10.3390/biom11010017.
|
[18] |
Salma U, Xue M, Ali Sheikh MS, et al. Role of transforming growth factor-β1 and Smads signaling pathway in intrauterine adhesion[J]. Mediators Inflamm, 2016, 2016: 4158287. doi:10.1155/2016/4158287.
|
[19] |
Wang H, Che J, Cui K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo[J]. Phytomedicine, 2021, 88: 153609. doi:10.1016/j.phymed.2021.153609.
|
[20] |
de Souza Basso B, Haute GV, Ortega-Ribera M, et al. Methoxyeugenol deactivates hepatic stellate cells and attenuates liver fibrosis and inflammation through a PPAR-γ and NF-κB mechanism[J]. J Ethnopharmacol, 2021, 280: 114433. doi:10.1016/j.jep.2021.114433.
|
[21] |
Zohny MH, Cavalu S, Youssef ME, et al. Coomassie brilliant blue G-250 dye attenuates bleomycin-induced lung fibrosis by regulating the NF-κB and NLRP3 crosstalk: A novel approach for filling an unmet medical need[J]. Biomed Pharmacother, 2022, 148: 112723. doi:10.1016/j.biopha.2022.112723.
|
[22] |
Xue X, Chen Q, Zhao G, et al. The Overexpression of TGF-β and CCN2 in Intrauterine Adhesions Involves the NF-κB Signaling Pathway[J]. PLoS One, 2015, 10: e0146159. doi:10.1371/journal.pone.0146159.
|
[23] |
Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenera-tive medicine[J]. Nat Rev Drug Discov, 2020, 19: 480-494. doi:10.1038/s41573-020-0070-z.
|
[24] |
Mia MM, Cibi DM, Ghani SABA, et al. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function[J]. Cardiovasc Res, 2022, 118: 1785-1804. doi:10.1093/cvr/cvab205.
|
[25] |
Zhu HY, Ge TX, Pan YB, et al. Advanced role of Hippo signaling in endometrial fibrosis: implications for intrauterine adhesion[J]. Chin Med J (Engl), 2017, 130: 2732-2737. doi:10.4103/0366-6999.218013.
|
[26] |
Shen J, Yan J, Wei X, et al. Gant61 ameliorates CCl4-induced liver fibrosis by inhibition of Hedgehog signaling activity[J]. Toxicol Appl Pharmacol, 2020, 387: 114853. doi:10.1016/j.taap.2019.114853.
|
[27] |
Yang X, Sun W, Jing X, et al. C/EBP homologous protein promotes Sonic Hedgehog secretion from type Ⅱ alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis[J]. Respir Res, 2022, 23: 86. doi:10.1186/s12931-022-02012-x.
|
[28] |
Lin X, Zhang Y, Pan Y, et al. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2[J]. Biol Reprod, 2018, 98: 480-490. doi:10.1093/biolre/ioy005.
|
[29] |
Wei C, Pan Y, Zhang Y, et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death Dis, 2020, 11: 755. doi:10.1038/s41419-020-02956-2.
|
[30] |
Wonnacott A, Denby L, Coward RJM, et al. MicroRNAs and their delivery in diabetic fibrosis[J]. Adv Drug Deliv Rev, 2022, 182: 114045. doi:10.1016/j.addr.2021.114045.
|
[31] |
Ye J, Lin Y, Yu Y, et al. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis[J]. J Transl Med, 2020, 18: 445. doi:10.1186/s12967-020-02577-5.
|
[32] |
Tan Q, Xia D, Ying X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion[J]. Int J Stem Cells, 2020, 13: 414-423. doi:10.15283/ijsc20049.
|
[33] |
Chen Y, Sun D, Shang D, et al. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endome-trial epithelial cells[J]. Open Med (Wars), 2022, 17: 518-526. doi:10.1515/med-2022-0424.
|
[34] |
Sun D, Jiang Z, Chen Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling[J]. Bioengineered, 2021, 12: 12891-12904. doi:10.1080/21655979.2021.2006976.
|
[35] |
Ye S, Luo W, Khan ZA, et al. Celastrol attenuates angiotensin Ⅱ-induced cardiac remodeling by targeting STAT3[J]. Circ Res, 2020, 126: 1007-1023. doi:10.1161/CIRCRESAHA.119.315861.
|
[36] |
Bensalah M, Muraine L, Boulinguiez A, et al. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis[J]. J Cachexia Sarcopenia Muscle, 2022, 13: 1771-1784. doi:10.1002/jcsm.12974.
|
[37] |
Strieter RM, Gomperts BN, Keane MP. The role of CXC chemokines in pulmonary fibrosis[J]. J Clin Invest, 2007, 117: 549-556. doi:10.1172/JCI30562.
|
[38] |
Wilkinson-Berka JL. Angiotensin and diabetic retinopathy[J]. Int J Biochem Cell Biol, 2006, 38: 752-765. doi:10.1016/j.biocel.2005.08.002.
|
[39] |
Zhang M, Sui W, Xing Y, et al. Angiotensin Ⅳ attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis[J]. Theranostics, 2021, 11: 8624-8639. doi:10.7150/thno.48561.
|