基础医学与临床 ›› 2023, Vol. 43 ›› Issue (4): 538-546.doi: 10.16352/j.issn.1001-6325.2023.04.0538
刘湛傲1, 陈晨2*
收稿日期:
2022-07-30
修回日期:
2022-12-30
出版日期:
2023-04-05
发布日期:
2023-04-03
通讯作者:
*cchen18@cmu.edu.cn
基金资助:
LIU Zhan'ao1, CHEN Chen2*
Received:
2022-07-30
Revised:
2022-12-30
Online:
2023-04-05
Published:
2023-04-03
Contact:
*cchen18@cmu.edu.cn
摘要: 早发性卵巢功能不全(premature ovarian insufficiency,POI)是指女性40岁之前出现卵巢功能减退,其病理基础是原始卵泡的耗竭或难以激活,这一类患者自然受孕率低,排卵诱导治疗效果不佳,目前尚无有效恢复卵巢功能的方法。针对卵泡的体外激活技术(in vitro activation,IVA)是指手术取出部分卵巢组织,在体外进行药物或物理干预来激活残存卵泡,然后回植体内,使之生长至能对促排卵治疗产生反应的阶段。再配合促排卵治疗,可获得用于体外受精-胚胎移植的成熟卵泡。迄今IVA技术尚不完善,但为POI患者的治疗提供了新的方向。本文总结了卵泡体外激活的原理,相关信号通路及各通路中的药物靶点,并对卵泡体外激活方案在POI患者中的应用与优化进行综述,为POI患者的诊疗提供依据。
中图分类号:
刘湛傲, 陈晨. 卵泡体外激活在早发性卵巢功能不全患者辅助生殖中的研究进展[J]. 基础医学与临床, 2023, 43(4): 538-546.
LIU Zhan'ao, CHEN Chen. In vitro follicle activation as a strategy for assisted reproduction in patients with premature ovarian insufficiency: research advances[J]. Basic & Clinical Medicine, 2023, 43(4): 538-546.
[1] | 陈子江, 秦杰, 乔杰, 等. 早发性卵巢功能不全的临床诊疗中国专家共识[J]. 中华妇产科杂志, 2017, 52: 577-581. |
[2] | Golezar S, Ramezani Tehrani F, Khazaei S, et al. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis[J]. Climacteric, 2019, 22: 403-411. |
[3] | Panay N, Anderson RA, Nappi RE, et al. Premature ovarian insufficiency: an International Menopause Society White Paper[J]. Climacteric, 2020, 23: 426-446. |
[4] | Fraison E, Crawford G, Casper G, et al. Pregnancy following diagnosis of premature ovarian insufficiency: a systematic review[J]. Reprod Biomed Online, 2019, 39: 467-476. |
[5] | Maruyama T. A woman with primary ovarian insufficiency had two live births resulting from intrauterine insemina-tions during 10 years of ovarian follicle monitoring[J]. J Obstet Gynaecol Res, 2020, 46: 2159-2163. |
[6] | Vo KCT, Kawamura K. In vitro activation early follicles: from the basic science to the clinical perspectives[J]. Int J Mol Sci, 2021, 22: 3785. |
[7] | Hsueh AJW, Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients[J]. Fertil Steril, 2020, 114: 458-464. |
[8] | Wang W, Todorov P, Isachenko E, et al. In vitro activation of cryopreserved ovarian tissue: A single-arm meta-analysis and systematic review[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 258: 258-264. |
[9] | Zhai J, Zhang J, Zhang L, et al. Autotransplantation of the ovarian cortex after in-vitro activation for infertility treatment: a shortened procedure[J]. Hum Reprod, 2021, 36: 2134-2147. |
[10] | McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles[J]. Endocrine Rev, 2000, 21: 200-214. |
[11] | Lew R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 55: 2-13. |
[12] | Dewailly D, Andersen CY, Balen A, et al. The physiology and clinical utility of anti-Mullerian hormone in women[J]. Hum Reprod Update, 2014, 20: 370-385. |
[13] | Anderson RA, Nelson SM. Anti-Mullerian hormone in the diagnosis and prediction of premature ovarian insufficiency[J]. Semin Reprod Med, 2020, 38: 263-269. |
[14] | Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results[J]. Hum Reprod, 1986, 1: 81-87. |
[15] | Mauri D, Gazouli I, Zarkavelis G, et al. Chemotherapy associated ovarian failure[J]. Front Endocrinol (Lausanne), 2020, 11: 572388. |
[16] | Lawrenz B, Coughlan C, Melado L, et al. Step-down of FSH- dosage during ovarian stimulation - basic lessons to be learnt from a randomized controlled trial[J]. Front Endocrinol (Lausanne), 2021, 12: 661707. |
[17] | Arroyo A, Kim B, Yeh J. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact[J]. Reprod Sci, 2020, 27: 1223-1252. |
[18] | Baerwald A, Pierson R. Ovarian follicular waves during the menstrual cycle: physiologic insights into novel approaches for ovarian stimulation[J]. Fertil Steril, 2020, 114: 443-457. |
[19] | Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review[J]. Hum Reprod Update, 2012, 18: 73-91. |
[20] | Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing[J]. Cells, 2020, 9: 200. |
[21] | Masciangelo R, Hossay C, Chiti MC, et al. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue[J]. J Assist Reprod Genet, 2020, 37: 101-108. |
[22] | Terren C, Munaut C. Molecular basis associated with the control of primordial follicle activation during transplanta-tion of cryopreserved ovarian tissue[J]. Reprod Sci, 2021, 28: 1257-1266. |
[23] | Ford EA, Beckett EL, Roman SD, et al. Advances in human primordial follicle activation and premature ovarian insufficiency[J]. Reproduction, 2020, 159: 15-29. |
[24] | Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013, 110: 17474-17479. |
[25] | Zhai J, Yao G, Dong F, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients[J]. J Clin Endocrinol Metab, 2016, 101: 4405-4412. |
[26] | Zhang J, Yan L, Wang Y, et al. In vivo and in vitro activation of dormant primordial follicles by EGF treatment in mouse and human[J]. Clin Transl Med, 2020, 10: 182. |
[27] | Yan H, Zhang J, Wen J, et al. CDC42 controls the activation of primordial follicles by regulating PI3K signaling in mouse oocytes[J]. BMC Biol, 2018, 16: 73. |
[28] | Correia B, Sousa MI, Ramalho-Santos J. The mTOR pathway in reproduction: from gonadal function to developmental coordination[J]. Reproduction, 2020, 159: 173-188. |
[29] | Condon KJ, Sabatini DM. Nutrient regulation of mTORC1 at a glance[J]. J Cell Sci, 2019, 132: 222570. |
[30] | Zhang T, Du X, Zhao L, et al. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription[J]. FASEB J, 2019, 33: 14703-14716. |
[31] | Sun X, Su Y, He Y, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14: 721-731. |
[32] | Ma S, Meng Z, Chen R, et al. The Hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604. |
[33] | Pors SE, Harethardottir L, Olesen HO, et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue[J]. Mol Hum Reprod, 2020, 26: 301-311. |
[34] | Tanaka Y, Hsueh AJ, Kawamura K. Surgical approaches of drug-free in vitro activation and laparoscopic ovarian incision to treat patients with ovarian infertility[J]. Fertil Steril, 2020, 114: 1355-1357. |
[35] | Zhang X, Han T, Yan L, et al. Resumption of ovarian function after ovarian biopsy/scratch in patients with premature ovarian insufficiency[J]. Reprod Sci, 2019, 26: 207-213. |
[36] | Ouni E, Bouzin C, Dolmans MM, et al. Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause[J]. Hum Reprod, 2020, 35: 1391-1410. |
[37] | Suzuki N, Yoshioka N, Takae S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency[J]. Hum Reprod, 2015, 30: 608-615. |
[38] | Fabregues F, Ferreri J, Calafell JM, et al. Pregnancy after drug-free in vitro activation of follicles and fresh tissue autotransplantation in primary ovarian insufficiency patient: a case report and literature review[J]. J Ovarian Res, 2018, 11: 76. |
[39] | Ferreri J, Fabregues F, Calafell JM, et al. Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency[J]. Reprod Biomed Online, 2020, 40: 254-260. |
[40] | Kawamura K, Ishizuka B, Hsueh AJW. Drug-free in-vitro activation of follicles for infertility treatment in poor ovarian response patients with decreased ovarian reserve[J]. Reprod Biomed Online, 2020, 40: 245-253. |
[41] | Jiao X, Meng T, Zhai Y, et al. Ovarian reserve markers in premature ovarian insufficiency: within different clinical stages and different etiologies[J]. Front Endocrinol(Lausanne), 2021, 12: 601752. |
[42] | von Wolff M, Roumet M, Stute P, et al. Serum anti-Mullerian hormone (AMH) concentration has limited prognostic value for density of primordial and primary follicles, questioning it as an accurate parameter for the ovarian reserve[J]. Maturitas, 2020, 134: 34-40. |
[43] | Kasahara Y, Osuka S, Bayasula, et al. Very low levels of serum anti-mullerian hormone as a possible marker for follicle growth in patients with primary ovarian insufficiency under hormone replacement therapy[J]. Reprod Sci, 2021, 28: 31-36. |
[44] | Piver P, Sallee C, Durand LM, et al. Robot-assisted laparoscopic auto-graft of patchwork ovarian cortex in two steps[J]. J Gynecol Obstet Hum Reprod, 2020, 49: 101730. |
[45] | Man L, Park L, Bodine R, et al. Co-transplantation of human ovarian tissue with engineered endothelial cells: a cell-based strategy combining accelerated perfusion with direct paracrine delivery[J]. J Vis Exp, 2018,135:57472. |
[46] | Lim M, Thompson JG, Dunning KR. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and ovarian function: follicle development, ovulation, oocyte maturation[J]. Reproduction, 2021, 161: F33-F40. |
[47] | Guzel Y, Bildik G, Oktem O. Sphingosine-1-phosphate protects human ovarian follicles from apoptosis in vitro[J]. Eur J Obstet Gynecol Reprod Biol, 2018, 222: 19-24. |
[48] | Dolmans MM, Donnez J, Cacciottola L. Fertility preservation: the challenge of freezing and transplanting ovarian tissue[J]. Trends Mol Med, 2021, 27: 777-791. |
[49] | Olesen HO, Pors SE, Jensen LB, et al. N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue[J]. Hum Reprod, 2021, 36: 429-443. |
[1] | 甄磊, 张懿兰, 王晓娜, 张小琼. 瑞马唑仑减轻心肌缺血/再灌注大鼠心肌损伤[J]. 基础医学与临床, 2024, 44(9): 1243-1248. |
[2] | 姚安军, 陈凌子, 金惠仙. 二十二碳六烯酸抑制人结肠癌细胞系HT-29增殖[J]. 基础医学与临床, 2024, 44(8): 1107-1112. |
[3] | 徐家雯, 屠心茹, 刘锐, 江瑞, 陶龙, 姚余有. 慢性应激致老年雌小鼠学习记忆损伤[J]. 基础医学与临床, 2023, 43(2): 225-232. |
[4] | 查娜, 郝丹丹, 李天柱. microRNAs通过Hippo通路抑制肝细胞癌发生的研究进展[J]. 基础医学与临床, 2023, 43(12): 1871-1875. |
[5] | 贾楠, 王志莲. CALCOCO1与恶性肿瘤的发生发展[J]. 基础医学与临床, 2023, 43(11): 1733-1737. |
[6] | 王平, 徐作军, 徐凯峰. 肺多发结节囊性病变罕见原因结节性硬化症1例[J]. 基础医学与临床, 2022, 42(9): 1424-1427. |
[7] | 张新格, 马洁, 王庆志, 辛悦, 杨晨妍, 熊熙文. 肠上皮Depdc5/mTORC1信号轴调控小鼠小肠上皮稳态[J]. 基础医学与临床, 2022, 42(8): 1213-1219. |
[8] | 张玉林, 邹姮, 张觇宇. 环磷酰胺诱导大鼠卵巢功能不全及差异表达基因分析[J]. 基础医学与临床, 2022, 42(8): 1243-1249. |
[9] | 李杰, 浦洋, 张梦迪, 张鹏举, 许寅喆. mTOR活化上调MGST1并增强细胞抗氧化能力[J]. 基础医学与临床, 2022, 42(4): 553-559. |
[10] | 李勇晓, 孙燕, 张瑞生. 丙泊酚抑制人子宫内膜癌细胞系RL95-2增殖[J]. 基础医学与临床, 2022, 42(1): 114-119. |
[11] | 黄婷, 李真真, 白杨, 刘惠双. 益生菌改善高脂高糖饲养诱导的肥胖小鼠脂代谢紊乱[J]. 基础医学与临床, 2021, 41(9): 1260-1265. |
[12] | 钱子冰, 刘静, 曾佩芸, 张琦. mTOR调控自噬参与糖尿病并发症的研究进展[J]. 基础医学与临床, 2021, 41(8): 1200-1204. |
[13] | 李凯, 王亚南. 氢氧化钠增强雷帕霉素抑制Tsc2缺失的小鼠胚胎成纤维细胞的增殖[J]. 基础医学与临床, 2021, 41(7): 951-956. |
[14] | 李长安, 刘春秀, 谢晓娟, 孙爱平. 下调Notch1基因促进人肝癌细胞系HepG2自噬[J]. 基础医学与临床, 2021, 41(4): 508-513. |
[15] | 张梦迪, 王亚南, 李杰, 浦洋. 雷帕霉素下调mTOR-GP73通路抑制结直肠癌进程[J]. 基础医学与临床, 2020, 40(7): 934-939. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 368
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部