[1]de Vos WM, Tilg H, Van Hul M, et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71:1020-1032. doi: 10.1136/gutjnl-2021-326789. [2]Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease[J]. Cell Microbiol, 2014, 16:1024-33. doi: 10.1111/cmi.12308. [3]邵瑞飞,杨艳,郑志榕,等. 肠道菌群和“肠-肺”轴在脓毒症中的作用[J]. 基础医学与临床,2020, 40:1109-1112. [4]Mo M, Wang J, Gu H, et al. Intestinal microbes-based analysis of immune mechanism of childhood asthma[J]. Cell Mol Biol (Noisy-le-grand), 2022, 68:70-80. doi: 10.14715/cmb/2022.68.2.11. [5]Liu Y, Liu J, Du M, et al. Short-chain fatty acid-A critical interfering factor for allergic diseases[J]. Chem Biol Interact, 2023, 385:110739. doi: 10.1016/j.cbi.2023.110739. [6]Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20:159-66. doi: 10.1038/nm.3444. [7]Guryanova SV. Bacteria and allergic diseases[J]. Int J Mol Sci, 2024, 25:10298. doi: 10.3390/ijms251910298. [8]Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22:274. doi: 10.1186/s12931-021-01872-z. [9]Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease[J]. Nat Commun, 2020, 11:5886. doi: 10.1038/s41467-020-19701-0. [10]Fluhr L, Mor U, Kolodziejczyk AA, et al. Gut microbiota modulates weight gain in mice after discontinued smoke exposure[J]. Nature, 2021, 600:713-719. doi: 10.1038/s41586-021-04194-8. [11]D'amico F, Baumgart DC, Danese S, et al. Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention, and management[J]. Clin Gastroenterol Hepatol, 2020, 18:1663-1672. doi: 10.1016/j.cgh.2020.04.001. [12]Sencio V, Machado MG, Trottein F. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes[J]. Mucosal Immunol, 2021, 14:296-304. doi: 10.1038/s41385-020-00361-8. [13]Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection via GM-CSF signaling[J]. Nat Commun, 2017, 8:1512. doi: 10.1038/s41467-017-01803-x. [14]Galvão I, Tavares LP, Corrêa RO, et al. The metabolic sensor GPR43 receptor plays a role in the control of klebsiella pneumoniae infection in the lung[J]. Front Immunol, 2018, 9:142. doi: 10.3389/fimmu.2018.00142. [15]Zhang DW, Lu JL, Dong BY, et al. Gut microbiota and its metabolic products in acute respiratory distress syndrome[J]. Front Immunol, 2024, 15:1330021. doi: 10.3389/fimmu.2024.1330021. [16]Dickson RP, Singer BH, Newstead MW, et al. Enrich-ment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1:16113. doi: 10.1038/nmicrobiol.2016.113. [17]Althouse MH, Stewart C, Jiang W, et al. Impact of early life antibiotic exposure and neonatal hyperoxia on the murine microbiome and lung injury[J]. Sci Rep, 2019, 9:14992. doi: 10.1038/s41598-019-51506-0. [18]Wedgwood S, Warford C, Agvatisiri SR, et al. The developing gut-lung axis: postnatal growth restriction, intestinal dysbiosis, and pulmonary hypertension in a rodent model[J]. Pediatr Res, 2020, 87:472-479. doi: 10.1038/s41390-019-0578-2. [19]Chen CM, Chou HC, Yang YSH, et al. Predicting hyperoxia-induced lung injury from associated intestinal and lung dysbiosis in neonatal mice[J]. Neonatology, 2021, 118:163-173. doi: 10.1159/000513553. [20]Abdelgawad A, Nicola T, Martin I, et al. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota[J]. Microbiome, 2023, 11:226. doi: 10.1186/s40168-023-01673-0. [21]Chen CM, Yang YSH, Chou HC. Maternal antibiotic exposure disrupts microbiota and exacerbates hyperoxia-induced lung injury in neonatal mice[J]. Pediatr Res, 2021, 90:776-783. doi: 10.1038/s41390-020-01335-z. [22]Zhang J, Bi J, Ren Y, et al. Natural killer T cell ligand alpha-galactosylceramide protects against gut ischemia reperfusion-induced organ injury in mice[J]. Cytokine, 2018, 111:237-245. doi: 10.1016/j.cyto.2018.08.032. [23]Wang YH, Yan ZZ, Luo SD, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice[J]. Eur Respir J, 2023, 61:2200840. doi: 10.1183/13993003.00840-2022. [24]Kapur R, Kim M, Rebetz J, et al. Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury[J]. Blood Adv, 2018, 2:1651-1663. doi: 10.1182/bloodadvances.2018018903. [25]Tian Z, Wu E, You J, et al. Dynamic alterations in the lung microbiota in a rat model of lipopolysaccharide-induced acute lung injury[J]. Sci Rep, 2022, 12:4791. doi: 10.1038/s41598-022-08831-8. [26]Serbanescu MA, Mathena RP, Xu J, et al. General anesthesia alters the diversity and composition of the intestinal microbiota in mice[J]. Anesth Analg, 2019, 129:e126-e129. doi: 10.1213/ANE.0000000000003938. |