[1] Curovic VR, Eickhoff MK, Rönkkö T, et al. Dapagli-flozin improves the urinary proteomic kidney-risk classifier CKD273 in type 2 diabetes with albuminuria: a randomized clinical trial[J]. Diabetes Care,2022,45:2662-2668. doi: 10.2337/dc22-1157. [2] Verbeke F, Siwy J, Van Biesen W, et al. The urinary proteomics classifier chronic kidney disease 273 predicts cardiovascular outcome in patients with chronic kidney disease[J]. Nephrol Dial Transplant,2021,36:811-818. doi: 10.1093/ndt/gfz242. [3] Rambabova-Bushljetik I, Metzger J, Siwy J, et al. Association of the chronic kidney disease urinary proteomic predictor CKD273 with clinical risk factors of graft failure in kidney allograft recipients[J].Nephrol Dial Transplant,2022,37:2014-2021. doi: 10.1093/ndt/gfab297. [4] Ali H, Malik MZ, Abu-Farha M, et al. Dysregulated urinary extracellular vesicle small RNAs in diabetic nephropathy: implications for diagnosis and therapy[J]. J Endocr Soc,2024,8:bvae114. doi: 10.1210/jendso/bvae114. [5] Wang J, Tao Y, Zhao F, et al. Expression of urinary exosomal miRNA-615-3p and miRNA-3147 in diabetic kidney disease and their association with inflammation and fibrosis[J]. Ren Fail,2023,45:2121929. doi: 10.1080/0886022X.2022.2121929. [6] Han Y, Zhou Q, Liu L, et al. DNI-MDCAP: improve-ment of causal MiRNA-disease association prediction based on deep network imputation[J]. BMC Bioinformatics,2024,25:22. doi: 10.1186/s12859-024-05644-6. [7] Zheng S, Zeng Y, Chu L, et al. Renal tissue-derived exosomal miRNA-34a in diabetic nephropathy induces renal tubular cell fibrosis by promoting the polarization of M1 macrophages[J]. IET Nanobiotechnol,2024,2024:5702517. doi: 10.1049/2024/5702517. [8] Zhou HL, Zhang R, Anand P, et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury[J]. Nature,2019,565:96-100. doi: 10.1038/s41586-018-0749-z. [9] Li D, Hsu FC, Palmer ND, et al. Multiomics analyses identify AKR1A1 as a biomarker for diabetic kidney disease[J]. Diabetes, 2024,73:1188-1195. doi: 10.2337/db23-0540. [10] Fujii J, Homma T, Miyata S, et al. Pleiotropic actions of aldehyde reductase(AKR1A)[J]. Metabolites,2021,11:343. doi: 10.3390/metabo11060343. [11] Petra E, Siwy J, Vlahou A, et al. Urine peptidome in combination with transcriptomics analysis highlights MMP7, MMP14 and PCSK5 for further investigation in chronic kidney disease[J]. PLoS One,2022,17:e0262667. doi: 10.1371/journal.pone.0262667. [12] Meng N, Li Y, Jiang P, et al. A comprehensive pan-cancer analysis of the tumorigenic role of matrix metallopeptidase 7(MMP7) across human cancers[J]. Front Oncol, 2022,12:916907. doi: 10.3389/fonc.2022.916907. [13] Hirohama D, Abedini A, Moon S, et al. Unbiased human kidney tissue proteomics identifies matrix metalloprote-inase 7 as a kidney disease biomarker[J]. J Am Soc Nephrol, 2023,34:1279-1291. doi: 10.1681/ASN.0000000000000141. [14] Zhou D, Tian Y, Sun L, et al. Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis[J]. J Am Soc Nephrol, 2017,28:598-611. doi: 10.1681/ASN.2016030354. [15] Balu D, Krishnan V, Krishnamoorthy V, et al. Does serum kidney injury molecule-1 predict early diabetic nephropathy: A comparative study with microalbuminuria[J]. Ann Afr Med, 2022,21:136-139. doi: 10.4103/aam.aam_92_20. [16] Khan FA, Fatima SS, Khan GM, et al. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy[J]. Pak J Med Sci, 2019,35:992-996. doi: 10.12669/pjms.35.4.154. [17] Siddiqui K, Joy SS, George TP, et al. Potential role and excretion level of urinary transferrin, KIM-1, RBP, MCP-1 and NGAL markers in diabetic nephropathy[J]. Diabetes Metab Syndr Obes, 2020,13:5103-5111. doi: 10.2147/DMSO.S282166. [18] Prashant P, Dahiya K, Bansal A, et al. Neutrophil gelatinase-associated lipocalin(NGAL) as a potential early biomarker for diabetic nephropathy: a meta-analysis[J]. Int J Biochem Mol Biol,2024,15:1-7. doi: 10.62347/FVBS3902. [19] Lin ZH, Dai SF, Zhao JN, et al. Application of urinary N-acetyl-β-D-glucosaminidase combined with serum retinol-binding protein in early detection of diabetic nephropathy[J]. World J Diabetes, 2023,14:883-891. doi: 10.4239/wjd.v14.i6.883. [20] Lee E, Lee YK, Kang HJ. Association between the urinary N-acetyl-β-D-glucosaminidase/creatinine ratio and factors of the metabolic syndrome[J]. Ann Clin Lab Sci, 2018,48:627-633. [21] Elsayed MS, El Badawy A, Ahmed A, et al. Serum cystatin C as an indicator for early detection of diabetic nephropathy in type 2 diabetes mellitus[J]. Diabetes Metab Syndr, 2019,13:374-381. doi: 10.1016/j.dsx.2018.08.017. [22] Dejenie TA, Abebe EC, Mengstie MA, et al. Dyslipidemia and serum cystatin C levels as biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus[J]. Front Endocrinol(Lausanne), 2023,14:1124367. doi: 10.3389/fendo.2023.1124367. [23] Zhang L, Xue S, Wu M, et al. Performance of urinary liver-type fatty acid-binding protein in diabetic nephropathy: A meta-analysis[J]. Front Med(Lausanne), 2022,9:914587. doi: 10.3389/fmed.2022.914587. [24] Ueno A, Onishi Y, Mise K, et al. Plasma angiotensin-converting enzyme 2(ACE2) is a marker for renal outcome of diabetic kidney disease(DKD)(U-CARE study 3)[J]. BMJ Open Diabetes Res Care,2024,12:e0042.doi: 10.1136/bmjdrc-2024-004237. |