[1] Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis mechanisms involved in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21: 8765. doi: 10.3390/ijms21228765. [2] Katsarou A, Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis[J]. Mol Aspects Med, 2020, 75:100866. doi:10.1016/j.mam.2020.100866. [3] Ganasen M, Togashi H, Takeda H, et al. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate[J]. Commun Biol, 2018, 1:120. doi:10.1038/s42003-018-0121-8. [4] Schlottmann F, Vera-Aviles M, Latunde-Dada GO. Duodenal cytochrome b (Cybrd1) ferric reductase functional studies in cells[J]. Metallomics, 2017, 9: 1389-1393. [5] Yanatori I, Kishi F. DMT1 and iron transport[J]. Free Radic Biol Med, 2019, 133:55-63. [6] Billesbølle CB, Azumaya CM, Kretsch RC, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms[J]. Nature, 2020, 586: 807-811. [7] Kawabata H. The mechanisms of systemic iron homeo-stasis and etiology, diagnosis, and treatment of hereditary hemochromatosis[J]. Int J Hematol, 2018, 107: 31-43. [8] Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders[J]. Transl Gastroenterol Hepatol, 2020, 5:25. doi:10.21037/tgh.2019.11.15. [9] Blanc L, Papoin J, Debnath G, et al. Abnormal erythroid maturation leads to microcytic anemia in the TSAP6/Steap3 null mouse model[J]. Am J Hematol, 2015, 90: 235-241. [10] Iwai K. Regulation of cellular iron metabolism: iron-dependent degradation of IRP by SCFFBXL5 ubiquitin ligase[J]. Free Radic Biol Med, 2019, 133:64-68. [11] Hudson DM, Curtis SB, Smith VC, et al. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic {beta}-cells[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298: G425-G432. [12] Xu E, Chen M, Zheng J, et al. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis[J]. Biochem Biophys Res Commun, 2018, 503: 1905-1910. [13] Gao G, Li J, Zhang Y, et al. Cellular iron metabolism and regulation[J]. Adv Exp Med Biol, 2019, 1173:21-32. [14] Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133:46-54. [15] Camaschella C, Pagani A. Advances in understanding iron metabolism and its crosstalk with erythropoiesis[J]. Br J Haematol, 2018, 182: 481-494. [16] Zhang J, Chen X, Hong J, et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses[J]. Sci China Life Sci, 2021, 64: 352-362. [17] Papanikolaou G, Pantopoulos K. Systemic iron homeo-stasis and erythropoiesis[J]. IUBMB life, 2017, 69: 399-413. [18] Seguin A, Jia X, Earl AM, et al. The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice[J]. J Biol Chem, 2020, 295: 11002-11020. [19] Hawula ZJ, Wallace DF, Subramaniam VN, et al. Therapeutic advances in regulating the hepcidin/ferroportin axis[J]. Pharmaceuticals (Basel), 2019, 12:170. doi:10.3390/ph12040170. [20] Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020, 105: 260-272. |