[1] Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128:40-50. [2] American Diabetes Association.10. Cardiovascular disease and risk management: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020, 43:S111-S134. [3] Braunwald E.Diabetes, heart failure, and renal dysfunction: the vicious circles[J]. Prog Cardiovasc Dis,2019,62:298-302. [4] Ioachimescu AG. Diabetes and atherosclerotic cardiovascular disease[J]. Endocrinol Metab Clin North Am, 2018,47:xiii-xiv.doi:10.1016/j.ecl.2017.12.002. [5] Lee SH, Hwang SM, Kang DH, et al. Brain education-based meditation for patients with hypertension and/or type 2 diabetes: a pilot randomized controlled trial[J]. Medicine, 2019, 98:e15574. doi:10.1097/MD.0000000000015574. [6] Henning RJ.Type-2 diabetes mellitus and cardiovascular disease[J]. Future Cardiol, 2018, 14:491-509. [7] Connor T, Martin SD, Howlett KF, et al. Metabolic remodelling in obesity and type 2 diabetes: pathological or protective mechanisms in response to nutrient excess?[J]. Clin Exp Pharmacol Physiol, 2015, 42:109-115. [8] Julia R, Rong T. Metabolism in cardiomyopathy: every substrate matters[J]. Cardiovasc Res, 2017,113:411-421. [9] Kozakova M, Morizzo C, Fraser AG, et al.Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus[J]. Cardiovasc Diabetol, 2017,16:78. doi: 10.1186/s12933-017-0557-z. [10] Vergès B. Is reduction of hyperglycemia associated with a cardiovascular benefit?[J]. Presse Med, 2018,47:764-768. [11] Kulkarni H, Mamtani M, Blangero J, et al. Lipidomics in the study of hypertension in metabolic syndrome[J]. Curr Hypertens Rep, 2017, 19:7. doi:10.1007/s11906-017-0705-6. [12] Tatsumi Y, Ohkubo T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese[J]. Hypertens Res, 2017,40:795-806. [13] Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation[J]. Cardiovasc Diabetol, 2018, 17:57.doi: 10.1186/s12933-018-0703-2. [14] Wang HH, Lee DK, Liu M, et al. Novel insights into the pathogenesis and management of the metabolic syndrome[J]. Pediatr Gastroenterol Hepatol Nutr, 2020,23:189-230. [15] Athithan L, Gulsin GS, Mccann GP, et al. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date[J]. World J Diabetes, 2019,10:490-510. [16] Dhalla NS, Shah AK, Tappia PS. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy[J]. Int J Mol Sci, 2020,21:2413. doi:10.3390/ijms21072413. [17] Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity[J]. Circ Res, 2018, 122:624-638. [18] Zhang D, Li Y, Heims-Waldron D, et al. Mitochondrial cardiomyopathy caused by elevated reactive oxygen species and impaired cardiomyocyte proliferation[J]. Circ Res, 2018,122:74-87. [19] Alonso N, Moliner P, Mauricio D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy[J]. Adv Exp Med Biol, 2018,1067:197-217. [20] Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol, 2017, 37:191-204. [21] Jiewen J, Weimin W, Liangying Z, et al. Cardiovascular autonomic neuropathy is an independent risk factor for left ventricular diastolic dysfunction in patients with type 2 Diabetes[J]. Biomed Res Int, 2017, 2017:3270617. doi:10.1155/2017/3270617. [22] Ningning W, Asadur R, Hirofumi H, et al. The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity[J]. Front Endocrinol, 2018, 9:421. doi:10.3389/fendo.2018.00421. [23] Kang S, Verma S, Hassanabad AF, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME Results[J]. Can J Cardiol, 2020,36:543-553. [24] Verma S, Rawat S, Ho KL, et al. Empaglifiozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors[J].JACC Basic Transl Sci, 2018,3:575-587. [25] Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action[J]. JAMA Cardiol, 2017,2:1025-1029. [26] Baartscheer A, Schumacher CA, Wust RC, et al. Empaglifiozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J].Diabetologia, 2017,60:568-573. |