[1] Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma:state of the art and future directions[J]. CA Cancer J Clin, 2020, 70:299-312. [2] Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials[J]. Neurotherapeutics, 2017, 14:307-320. [3] Reardon DA, Ballman KV, Buckner JC, Chang SM, Ellingson BM. Impact of imaging measurements on response assessment in glioblastoma clinical trials[J]. Neuro Oncol, 2014, 16 Suppl 7(Suppl 7):vii24-35. [4] Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas[J]. Lancet Oncol, 2008, 9:453-461. [5] Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, No?l G. Pseudoprogression versus true progression in glioblastoma patients:a multiapproach literature review:part 1:molecular, morphological and clinical features[J]. Crit Rev Oncol Hematol, 2021, 157:103188. [6] Darbar A, Waqas M, Enam SF, Mahmood SD. Use of preoperative apparent diffusion coefficients to predict brain tumor grade[J]. Cureus, 2018, 10:e2284. [7] Tsakiris C, Siempis T, Alexiou GA, Zikou A, Sioka C, Voulgaris S, Argyropoulou MI. Differentiation between true tumor progression of glioblastoma and pseudoprogression using diffusion-weighted imaging and perfusion-weighted imaging:systematic review and meta-analysis[J]. World Neurosurg, 2020, 144:e100-109. [8] Kazda T, Bulik M, Pospisil P, Lakomy R, Smrcka M, Slampa P, Jancalek R. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma:single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging[J]. Neuroimage Clin, 2016, 11:316-321. [9] Liu J, Li C, Chen Y, Lv X, Lv Y, Zhou J, Xi S, Dou W, Qian L, Zheng H, Wu Y, Chen Z. Diagnostic performance of multiparametric MRI in the evaluation of treatment response in glioma patients at 3T[J]. J Magn Reson Imaging, 2020, 51:1154-1161. [10] Wang S, Martinez-Lage M, Sakai Y, Chawla S, Kim SG, AlonsoBasanta M, Lustig RA, Brem S, Mohan S, Wolf RL, Desai A, Poptani H. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI[J].AJNR Am J Neuroradiol, 2016, 37:28-36. [11] Agarwal A, Kumar S, Narang J, Schultz L, Mikkelsen T, Wang S, Siddiqui S, Poptani H, Jain R. Morphologic MRI features, diffusion tensor imaging and radiation dosimetric analysis to differentiate pseudo-progression from early tumor progression[J]. J Neurooncol, 2013, 112:413-420. [12] White NS, McDonald C, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, Bartsch H, Rakow-Penner R, Holland D, Shabaik A, Bj?rnerud A, Hope T, Hattangadi-Gluth J, Liss M, Parsons JK, Chen CC, Raman S, Margolis D, Reiter RE, Marks L, Kesari S, Mundt AJ, Kane CJ, Carter BS, Bradley WG, Dale AM. Diffusion-weighted imaging in cancer:physical foundations and applications of restriction spectrum imaging[J]. Cancer Res, 2014, 74:4638-4652. [13] Khan UA, Rennert RC, White NS, Bartsch H, Farid N, Dale AM, Chen CC. Diagnostic utility of restriction spectrum imaging (RSI) in glioblastoma patients after concurrent radiation-temozolomide treatment:a pilot study[J]. J Clin Neurosci, 2018, 58:136-141. [14] Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161:401-407. [15] Liao D, Liu YC, Tang B, Wang D, Li XH, Dai B, Wang RP. Comparison of DWI based on monoexponential, biexponential and stretched-exponential models in differentiating tumor recurrence and pseudoprogression of glioblastoma[J]. Zhongguo Yi Xue Ying Xiang Ji Shu, 2019, 35:1450-1455.[廖旦,刘远成,唐斌,王頔,李小海,代斌,王荣品.对比单指数、双指数及拉伸指数DWI鉴别诊断胶质母细胞瘤术后复发与假性进展[J].中国医学影像技术, 2019, 35:1450-1455.] [16] Miyoshi F, Shinohara Y, Kambe A, Kuya K, Murakami A, Kurosaki M, Ogawa T. Utility of intravoxel incoherent motion magnetic resonance imaging and arterial spin labeling for recurrent glioma after bevacizumab treatment[J]. Acta Radiol, 2018, 59:1372-1379. [17] Li B, Li H, Xu D, Zhou J, Xu HB. Research progress and clinical application of IVIM in glioma[J]. Fang She Xue Shi Jian, 2021, 36:262-266.[李波,李欢,徐聃,周杰,徐海波.IVIM在胶质瘤中的研究进展及临床应用[J].放射学实践, 2021, 36:262-266.] [18] Chen HY, Chen XZ, Ru XJ, Zhang YQ, Wang XP, Huang W, Ren XH, Lin S, Li Y, Wu T, Liu YO. The comparative study of multimodal MRI techniques in prognosis of glioblastoma[J].Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2019, 19:850-857.[陈红燕,陈绪珠,茹小娟,张月青,汪晓鹏,黄伟,任晓辉,林松,李洋,吴涛,刘亚欧.不同磁共振成像模式判断胶质母细胞瘤预后研究[J].中国现代神经疾病杂志, 2019, 19:850-857.] [19] Han T, Guo J, Liu L, Liu H, Bai X, Lei J, Hao NN, Guo Y, Liu ML, Cui SM. Evaluation of clinical application in diagnosis of brain tumor with dynamic contrast-enhanced perfusion MR imaging[J]. Zhongguo Xian Dai Shen Jing Ji Bing Za Zhi, 2006, 6:211-219.[韩彤,郭军,刘力,刘卉,白旭,雷静,郝妮娜,郭迎,刘梅丽,崔世民.动态对比增强磁共振灌注成像在脑肿瘤诊断中的应用价值[J].中国现代神经疾病杂志, 2006, 6:211-219.] [20] Zhang W, Hu WG, Song QB. Value of 3D-ASL and DCE-MRI in differential diagnosis of recurrent glioma and radiation-induced brain necrosis[J]. Guo Ji Zhong Liu Xue Za Zhi, 2021, 48:631-634.[张雯,胡伟国,宋启斌. 3D-ASL与DCE-MRI在脑胶质瘤复发与放射性脑坏死鉴别诊断中的价值[J].国际肿瘤学杂志, 2021, 48:631-634.] [21] Bani-Sadr A, Berner LP, Barritault M, Chamard L, Bidet CM, Eker OF, Hermier M, Guyotat J, Jouanneau E, Meyronet D, Gouttard S, D'Hombres A, Iziquierdo C, Honnorat J, Berthezène Y, Ducray F. Combined analysis of MGMT methylation and dynamic-susceptibility-contrast MRI for the distinction between early and pseudo-progression in glioblastoma patients[J]. Rev Neurol (Paris), 2019, 175:534-543. [22] Kickingereder P, Brugnara G, Hansen MB, Nowosielski M, Pflüger I, Schell M, Isensee F, Foltyn M, Neuberger U, Kessler T, Sahm F, Wick A, Heiland S, Weller M, Platten M, von Deimling A, Maier-Hein KH, ?stergaard L, van den Bent MJ, Gorlia T, Wick W, Bendszus M. Noninvasive characterization of tumor angiogenesis and oxygenation in bevacizumab-treated recurrent glioblastoma by using dynamic susceptibility MRI:secondary analysis of the European Organization for Research and Treatment of Cancer 26101 Trial[J]. Radiology, 2020, 297:164-175. [23] Cluceru J, Nelson SJ, Wen Q, Phillips JJ, Shai A, Molinaro AM, Alcaide-Leon P, Olson MP, Nair D, LaFontaine M, Chunduru P, Villanueva-Meyer JE, Cha S, Chang SM, Berger MS, Lupo JM. Recurrent tumor and treatment-induced effects have different MR signatures in contrast enhancing and non-enhancing lesions of high-grade gliomas[J]. Neuro Oncol, 2020, 22:1516-1526. [24] Yu XY, Ren L, Liu JJ, He Y, Liu SG, Zhu M, Han G. The value of three-dimensional arterial spin labeling in identifying recurrence and pseudo-progression of high-grade glioma[J]. Shi Yong Fang She Xue Za Zhi, 2021, 37:196-198.[于秀英,任乐,刘俊杰,何勇,刘松国,朱明,韩广.三维动脉自旋标记成像在鉴别高级别胶质瘤术后复发与假性进展的价值[J].实用放射学杂志, 2021, 37:196-198.] [25] van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis[J]. Eur Radiol, 2017, 27:4129-4144. [26] Amukotuwa SA, Yu C, Zaharchuk G. 3D pseudocontinuous arterial spin labeling in routine clinical practice:a review of clinically significant artifacts[J]. J Magn Reson Imaging, 2016, 43:11-27. [27] Verma G, Chawla S, Mohan S, Wang S, Nasrallah M, Sheriff S, Desai A, Brem S, O'Rourke DM, Wolf RL, Maudsley AA, Poptani H. Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma[J]. NMR Biomed, 2019, 32:e4042. [28] Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI:techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50:347-364. [29] Song Q, Zhang C, Chen X, Cheng Y. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas:a meta-analysis[J]. Acta Radiol, 2020, 61:549-557. [30] Zhang H, Cui YY, Feng J, Peng H, Zhang J, Wang Y, Wang YL, Xiao HF, Chen XJ, Ma L. Diagnostic and predictive efficacy of amide proton transfer MRI in tumor grading, isocitrate dehydrogenase status and the expression level of Ki-67 and p53 in gliomas[J]. Zhongguo Yi Xue Ying Xiang Xue Za Zhi, 2020, 28:327-332.[张浩,崔园园,冯杰,彭虹,张君,王岩,王玉林,肖华锋,陈新静,马林.氨基质子转移成像对脑胶质瘤分级及异柠檬酸脱氢酶、Ki-67、p53表达的诊断及预测价值[J].中国医学影像学杂志, 2020, 28:327-332.] [31] Meissner JE, Korzowski A, Regnery S, Goerke S, Breitling J, Floca RO, Debus J, Schlemmer HP, Ladd ME, Bachert P, Adeberg S, Paech D. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T[J]. J Magn Reson Imaging, 2019, 50:1268-1277. [32] Jiang S, Eberhart CG, Lim M, Heo HY, Zhang Y, Blair L, Wen Z, Holdhoff M, Lin D, Huang P, Qin H, Quinones-Hinojosa A, Weingart JD, Barker PB, Pomper MG, Laterra J, van Zijl PCM, Blakeley JO, Zhou J. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging:a validation study with image-guided stereotactic biopsy[J]. Clin Cancer Res, 2019, 25:552-561. [33] Ren T, Lin S, Wang Z, Shang A. Differential proteomics analysis of low-and high-grade of astrocytoma using iTRAQ quantification[J]. Onco Targets Ther, 2016, 9:5883-5895. [34] Gon?alves FG, Chawla S, Mohan S. Emerging MRI techniques to redefine treatment response in patients with glioblastoma[J].J Magn Reson Imaging, 2020, 52:978-997. [35] Ma B, Blakeley JO, Hong X, Zhang H, Jiang S, Blair L, Zhang Y, Heo HY, Zhang M, van Zijl PC, Zhou J. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J]. J Magn Reson Imaging, 2016, 44:456-462. [36] Fisher JA, Venkatraghavan L, Mikulis DJ. Magnetic resonance imaging-based cerebrovascular reactivity and hemodynamic reserve[J]. Stroke, 2018, 49:2011-2018. [37] Seb?k M, van Niftrik CHB, Muscas G, Pangalu A, Seystahl K, Weller M, Regli L, Fierstra J. Hypermetabolism and impaired cerebrovascular reactivity beyond the standard MRI-identified tumor border indicate diffuse glioma extended tissue infiltration[J]. Neurooncol Adv, 2021, 3:vdab048. [38] Muscas G, van Niftrik CHB, Seb?k M, Seystahl K, Piccirelli M, Stippich C, Weller M, Regli L, Fierstra J. Hemodynamic investigation of peritumoral impaired blood oxygenation-level dependent cerebrovascular reactivity in patients with diffuse glioma[J]. Magn Reson Imaging, 2020, 70:50-56. [39] Muscas G, van Niftrik CHB, Seb?k M, Della Puppa A, Seystahl K, Andratschke N, Brown M, Weller M, Regli L, Piccirelli M, Fierstra J. Distinct cerebrovascular reactivity patterns for brain radiation necrosis[J]. Cancers (Basel), 2021, 13:1840. [40] Peng H, Huo J, Li B, Cui Y, Zhang H, Zhang L, Ma L. Predicting isocitrate dehydrogenase (IDH) mutation status in gliomas using multiparameter MRI radiomics features[J]. J Magn Reson Imaging, 2021, 53:1399-1407. [41] Yi Z, Long L, Zeng Y, Liu Z. Current advances and challenges in radiomics of brain tumors[J]. Front Oncol, 2021, 11:732196. [42] Sohn CK, Bisdas S. Diagnostic accuracy of machine learning-based radiomics in grading gliomas:systematic review and metaanalysis[J]. Contrast Media Mol Imaging, 2020:ID2127062. [43] Choi YS, Bae S, Chang JH, Kang SG, Kim SH, Kim J, Rim TH, Choi SH, Jain R, Lee SK. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J]. Neuro Oncol, 2021, 23:304-313. [44] Wei J, Yang G, Hao X, Gu D, Tan Y, Wang X, Dong D, Zhang S, Wang L, Zhang H, Tian J. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication[J]. Eur Radiol, 2019, 29:877-888. [45] Su C, Jiang J, Zhang S, Shi J, Xu K, Shen N, Zhang J, Li L, Zhao L, Zhang J, Qin Y, Liu Y, Zhu W. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour[J]. Eur Radiol, 2019, 29:1986-1996. [46] Han Y, Cui GB, Nan HY. Radiomics model based on plain MRI for distinguishing solitary brain inflammation from atypical glioma[J]. Shi Yong Fang She Xue Za Zhi, 2021, 37:1578-1582.[韩宇,崔光彬,南海燕.基于平扫MRI影像组学模型鉴别单发性脑炎与不典型胶质瘤[J].实用放射学杂志, 2021, 37:1578-1582.] [47] Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo RE, Choi SH, Kim HS. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J].Neuro Oncol, 2019, 21:404-414. [48] Elshafeey N, Kotrotsou A, Hassan A, Elshafei N, Hassan I, Ahmed S, Abrol S, Agarwal A, El Salek K, Bergamaschi S, Acharya J, Moron FE, Law M, Fuller GN, Huse JT, Zinn PO, Colen RR. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma[J]. Nat Commun, 2019, 10:3170. |