[1] Van Laar AD, Van Laar VS, San Sebastian W, Merola A, Elder JB, Lonser RR, Bankiewicz KS. An update on gene therapy approaches for Parkinson's disease:restoration of dopaminergic function[J]. J Parkinsons Dis, 2021, 11(s2):S173-182. [2] Barker RA, Cutting EV, Daft DM. Bringing Advanced Therapy Medicinal Products (ATMPs) for Parkinson's disease to the clinic:the investigator's perspective[J]. J Parkinsons Dis, 2021, 11(s2):S129-134. [3] Tomishima M, Kirkeby A. Bringing advanced therapies for Parkinson's disease to the clinic:the scientist's perspective[J].J Parkinsons Dis, 2021, 11(s2):S135-140. [4] Morizane A, Takahashi J. Evading the immune system:immune modulation and immune matching in cell replacement therapies for Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(s2):S167-172. [5] Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M, Claros N, Rosen S, Ramnarine K, Horn C, Fredrickson C, Wong K, Safford B, Kriks S, El Maarouf A, Rutishauser U, Henchcliffe C, Wang Y, Riviere I, Mann S, Bermudez V, Irion S, Studer L, Tomishima M, Tabar V. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01[J]. Cell Stem Cell, 2021, 28:217-229.e7. [6] Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, Jeon J, Cha Y, Kim K, Li Q, Henchcliffe C, Kaplitt M, Neff C, Rapalino O, Seo H, Lee IH, Kim J, Kim T, Petsko GA, Ritz J, Cohen BM, Kong SW, Leblanc P, Carter BS, Kim KS.Personalized iPSC-derived dopamine progenitor cells for Parkinson's disease[J]. N Engl J Med, 2020, 382:1926-1932. [7] Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S, Takahashi J. Direct comparison of autologous and allogeneic transplantation of iPSCderived neural cells in the brain of a non-human primate[J].Stem Cell Reports, 2013, 1:283-292. [8] Takahashi J. iPS cell-based therapy for Parkinson's disease:a Kyoto trial[J]. Regen Ther, 2020, 13:18-22. [9] Umekage M, Sato Y, Takasu N. Overview:an iPS cell stock at CiRA[J]. Inflamm Regen, 2019, 39:17. [10] Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S. A more efficient method to generate integration-free human iPS cells[J]. Nat Methods, 2011, 8:409-412. [11] Ichise H, Nagano S, Maeda T, Miyazaki M, Miyazaki Y, Kojima H, Yawata N, Yawata M, Tanaka H, Saji H, Masuda K, Kawamoto H.NK cell alloreactivity against KIR-ligand-mismatched HLA-haploidentical tissue derived from HLA haplotype-homozygous iPSCs[J]. Stem Cell Reports, 2017, 9:853-867. [12] Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, Ueda T, Gee P, Nishikawa M, Nomura M, Kitaoka F, Takahashi T, Okita K, Yoshida Y, Kaneko S, Hotta A. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility[J]. Cell Stem Cell, 2019, 24:566-578.e7. [13] Kim TW, Koo SY, Studer L. Pluripotent stem cell therapies for Parkinson disease:present challenges and future opportunities[J]. Front Cell Dev Biol, 2020, 8:729. [14] Barker RA; TRANSEURO consortium. Designing stem-cell-based dopamine cell replacement trials for Parkinson's disease[J]. Nat Med, 2019, 25:1045-1053. [15] Garitaonandia I, Gonzalez R, Christiansen-Weber T, Abramihina T, Poustovoitov M, Noskov A, Sherman G, Semechkin A, Snyder E, Kern R. Neural stem cell tumorigenicity and biodistribution assessment for Phase Ⅰ clinical trial in Parkinson's disease[J]. Sci Rep, 2016, 6:34478. [16] Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M, Umekage M, Morizane A, Takahashi J. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease[J]. Nat Commun, 2020, 11:3369. [17] Kim TW, Piao J, Koo SY, Kriks S, Chung SY, Betel D, Socci ND, Choi SJ, Zabierowski S, Dubose BN, Hill EJ, Mosharov EV, Irion S, Tomishima MJ, Tabar V, Studer L. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use[J]. Cell Stem Cell, 2021, 28:343-355.e5. [18] Takahashi J. Clinical trial for Parkinson's disease gets a green light in the US[J]. Cell Stem Cell, 2021, 28:182-183. [19] Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, Bj?rklund A, Parmar M. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease[J]. Cell Stem Cell, 2014, 15:653-665. [20] Greene PE, Fahn S, Eidelberg D, Bjugstad KB, Breeze RE, Freed CR. Persistent dyskinesias in patients with fetal tissue transplantation for Parkinson disease[J]. NPJ Parkinsons Dis, 2021, 7:38. [21] Nolbrant, S. Heuer A, Parmar M, Kirkeby A. Generation of highpurity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation[J]. Nat Protoc, 2017, 12:1962-1979. [22] Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease[J]. Nat Rev Neurosci, 2020, 21:103-115. [23] Barker RA, Barrett J, Mason SL, Bj?rklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson's disease[J]. Lancet Neurol, 2013, 12:84-91. [24] Bj?rklund A, Parmar M. Neuronal replacement as a tool for basal ganglia circuitry repair:40 years in perspective[J]. Front Cell Neurosci, 2020, 14:146. [25] Adler AF, Cardoso T, Nolbrant S, Mattsson B, Hoban DB, Jarl U, Wahlestedt JN, Grealish S, Bj?rklund A, Parmar M. hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson's disease[J]. Cell Rep, 2019, 28:3462-3473.e5. [26] Xiong M, Tao Y, Gao Q, Feng B, Yan W, Zhou Y, Kotsonis TA, Yuan T, You Z, Wu Z, Xi J, Haberman A, Graham J, Block J, Zhou W, Chen Y, Zhang SC. Human stem cell-derived neurons repair circuits and restore neural function[J]. Cell Stem Cell, 2021, 28:112-126.e6. [27] Adler AF, Bj?rklund A, Parmar M. Transsynaptic tracing and its emerging use to assess graft-reconstructed neural circuits[J].Stem Cells, 2020, 38:716-726. [28] Gantner CW, de Luzy IR, Kauhausen JA, Moriarty N, Niclis JC, Bye CR, Penna V, Hunt CPJ, Ermine CM, Pouton CW, Kirik D, Thompson LH, Parish CL. Viral delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson's disease[J]. Cell Stem Cell, 2020, 26:511-526.e5. [29] Axelsen TM, Woldbye DPD. Gene therapy for Parkinson's disease, an update[J]. J Parkinsons Dis, 2018, 8:195-215. [30] Merola A, Van Laar A, Lonser R, Bankiewicz K. Gene therapy for Parkinson's disease:contemporary practice and emerging concepts[J]. Expert Rev Neurother, 2020, 20:577-590. [31] Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ. Results from a phase Ⅰ safety trial of hAADC gene therapy for Parkinson disease[J].Neurology, 2008, 70:1980-1983. [32] Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease[J]. Neurology, 2009, 73:1662-1669. [33] Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson's disease[J]. Hum Gene Ther, 2012, 23:377-381. [34] Valles F, Fiandaca MS, Eberling JL, Starr PA, Larson PS, Christine CW, Forsayeth J, Richardson RM, Su X, Aminoff MJ, Bankiewicz KS. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase Ⅰ study for the treatment of Parkinson disease[J]. Neurosurgery, 2010, 67:1377-1385. [35] Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I. A phase Ⅰ study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease[J].Mol Ther, 2010, 18:1731-1735. [36] Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B, Kells AP, Boot B, Martin AJ, Nutt J, Thompson ME, Larson PS. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease[J]. Ann Neurol, 2019, 85:704-714. [37] Palfi S, Gurruchaga JM, Lepetit H, Howard K, Ralph GS, Mason S, Gouello G, Domenech P, Buttery PC, Hantraye P, Tuckwell NJ, Barker RA, Mitrophanous KA. Long-term follow-up of a Phase Ⅰ/Ⅱ study of ProSavin, a lentiviral vector gene therapy for Parkinson's disease[J]. Hum Gene Ther Clin Dev, 2018, 29:148-155. [38] Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease:a dose escalation, open-label, phase 1/2 trial[J]. Lancet, 2014, 383:1138-1146. [39] SIO Gene Therapies. Axovant announces positive six-month follow-up data from second cohort of SUNRISE-PD phase 2 trial of AXO-Lenti-PD gene therapy[DB/OL]. 2020-10-06[2022-02-20] . http://investors.axovant.com/news-releases/news-release-details/axovant-announces-positive-six-month-follow-data-secondcohort. [40] Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease[J]. FEBS Lett, 2015, 589(24 Pt A):3760-3772. [41] Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases:implications for pathogenesis and therapy[J]. Neural Regen Res, 2017, 12:549-557. [42] Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease[J]. Prog Neurobiol, 2005, 77:128-138. [43] Buarts RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, Johnson EM Jr, Olanow CW, Mufson EJ, Kordower JH.Bioactivity of AAV2-neurturin gene therapy (CERE-120):differences between Parkinson's disease and nonhuman primate brains[J]. Mov Disord, 2011, 26:27-36. [44] Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, Turner DA, Stacy M, Lang AE, Lozano AM, Olanow CW. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients[J]. Neurology, 2013, 80:1698-1701. [45] Chu Y, Bartus RT, Manfredsson FP, Olanow CW, Kordower JH.Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease[J]. Brain, 2020, 143:960-975. [46] Heiss JD, Lungu C, Hammoud DA, Herscovitch P, Ehrlich DJ, Argersinger DP, Sinharay S, Scott G, Wu T, Federoff HJ, Zaghloul KA, Hallett M, Lonser RR, Bankiewicz KS. Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson's disease[J]. Mov Disord, 2019, 34:1073-1078. [47] Richardson RM, Bankiewicz KS, Christine CW, Van Laar AD, Gross RE, Lonser R, Factor SA, Kostyk SK, Kells AP, Ravina B, Larson PS. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91:1210-1218. [48] Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, Starr PA, Martin AJ, Lonser RR, Federoff HJ, Forsayeth JR, Bankiewicz KS. Interventional MRIguided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson's disease[J]. Mol Ther, 2011, 19:1048-1057. [49] Pearson TS, Gupta N, San Sebastian W, Imamura-Ching J, Viehoever A, Grijalvo-Perez A, Fay AJ, Seth N, Lundy SM, Seo Y, Pampaloni M, Hyland K, Smith E, de Oliveira Barbosa G, Heathcock JC, Minnema A, Lonser R, Elder JB, Leonard J, Larson P, Bankiewicz KS. Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons[J]. Nat Commun, 2021, 12:4251. [50] Payne K, Walls B, Wojcieszek J. Approach to assessment of Parkinson disease with emphasis on genetic testing[J]. Med Clin North Am, 2019, 103:1055-1075. [51] Sidorova YA, Saarma M. Can growth factors cure Parkinson's disease[J]?Trends Pharmacol Sci, 2020, 41:909-922. [52] Barker RA, Bj?rklund A, Gash DM, Whone A, Van Laar A, Kordower JH, Bankiewicz K, Kieburtz K, Saarma M, Booms S, Huttunen HJ, Kells AP, Fiandaca MS, Stoessl AJ, Eidelberg D, Federoff H, Voutilainen MH, Dexter DT, Eberling J, Brundin P, Isaacs L, Mursaleen L, Bresolin E, Carroll C, Coles A, Fiske B, Matthews H, Lungu C, Wyse RK, Stott S, Lang AE. GDNF and Parkinson's disease:where next:a summary from a recent workshop[J]?J Parkinsons Dis, 2020, 10:875-891. [53] Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson's disease[J]. Brain, 2019, 142:512-525. [54] Marks WJ Jr, Baumann TL, Bartus RT. Long-term safety of patients with Parkinson's disease receiving rAAV2-neurturin (CERE-120) gene transfer[J]. Hum Gene Ther, 2016, 27:522-527. [55] Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders[J]. Prog Brain Res, 2017, 230:99-132. [56] Emborg ME, Ebert AD, Moirano J, Peng S, Suzuki M, Capowski E, Joers V, Roitberg BZ, Aebischer P, Svendsen CN. GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys[J]. Cell Transplant, 2008, 17:383-395. [57] Akhtar AA, Gowing G, Kobritz N, Savinoff SE, Garcia L, Saxon D, Cho N, Kim G, Tom CM, Park H, Lawless G, Shelley BC, Mattis VB, Breunig JJ, Svendsen CN. Inducible expression of GDNF in transplanted iPSC-derived neural progenitor cells[J].Stem Cell Reports, 2018, 10:1696-1704. [58] Corraliza I. Recruiting specialized macrophages across the borders to restore brain functions[J]. Front Cell Neurosci, 2014, 8:262. [59] Chen C, Guderyon MJ, Li Y, Ge G, Bhattacharjee A, Ballard C, He Z, Masliah E, Clark RA, O'Connor JC, Li S. Non-toxic HSC transplantation-based macrophage/microglia-mediated GDNF delivery for Parkinson's disease[J]. Mol Ther Methods Clin Dev, 2019, 17:83-98. [60] Zhao Y, Haney MJ, Jin YS, Uvarov O, Vinod N, Lee YZ, Langworthy B, Fine JP, Rodriguez M, El-Hage N, Kabanov AV, Batrakova EV. GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson's disease in transgenic Parkin Q311X (A) mice[J]. J Control Release, 2019, 315:139-149. [61] Newland B, Dunnett SB, Dowd E. Targeting delivery in Parkinson's disease[J]. Drug Discov Today, 2016, 21:1313-1320. [62] Newland B, Newland H, Werner C, Rosser A, Wang W.Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders[J]. Prog Polym Sci, 2015, 44:79-112. [63] Garbayo E, Ansorena E, Lana H, Carmona-Abellan MD, Marcilla I, Lanciego JL, Luquin MR, Blanco-Prieto MJ. Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys[J]. Biomaterials, 2016, 110:11-23. [64] Meng XY, Huang AQ, Khan A, Zhang L, Sun XQ, Song H, Han J, Sun QR, Wang YD, Li XL. Vascular endothelial growth factor-loaded poly-lactic-co-glycolic acid nanoparticles with controlled release protect the dopaminergic neurons in Parkinson's rats[J].Chem Biol Drug Des, 2020, 95:631-639. [65] Schirmer L, Hoornaert C, Le Blon D, Eigel D, Neto C, Gumbleton M, Welzel PB, Rosser AE, Werner C, Ponsaerts P, Newland B. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain[J]. Biomater Sci, 2020, 8:4997-5004. [66] Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease:a mini review[J]. J Drug Target, 2015, 23:775-788. [67] Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers:a viable option for Parkinson's disease treatment[J]?Expert Opin Drug Deliv, 2019, 16:1355-1366. [68] Yue P, Gao L, Wang X, Ding X, Teng J. Intranasal administration of GDNF protects against neural apoptosis in a rat model of Parkinson's disease through PI3K/Akt/GSK3β pathway[J]. Neurochem Res, 2017, 42:1366-1374. [69] Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, Hernandez RM. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson's disease[J]. Mol Neurobiol, 2018, 55:145-155. [70] Bender TS, Migliore MM, Campbell RB, John Gatley S, Waszczak BL. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats[J]. Neuroscience, 2015, 303:569-576. [71] Price RJ, Fisher DG, Suk JS, Hanes J, Ko HS, Kordower JH.Parkinson's disease gene therapy:will focused ultrasound and nanovectors be the next frontier[J]?Mov Disord, 2019, 34:1279-1282. [72] Lin CY, Lin YC, Huang CY, Wu SR, Chen CM, Liu HL.Ultrasound-responsive neurotrophic factor-loaded microbubble-liposome complex:preclinical investigation for Parkinson's disease treatment[J]. J Control Release, 2020, 321:519-528. [73] Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, Mandell JW, Hirsh J, Suk JS, Hanes J, Price RJ.Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model[J]. Nano Lett, 2017, 17:3533-3542. [74] Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, Song L, Zhuge D, Li X, Zhao Y, Huang Z. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes[J]. Drug Deliv, 2018, 25:1560-1569. [75] Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer[J]. J Biol Chem, 2012, 287:15345-15364. [76] McCann H, Stevens CH, Cartwright H, Halliday GM. alpha-Synucleinopathy phenotypes[J]. Parkinsonism Relat Disord, 2014, 20 Suppl 1:S62-67. [77] Castonguay AM, Gravel C, Lévesque M. Treating Parkinson's disease with antibodies:previous studies and future directions[J]. J Parkinsons Dis, 2021, 11:71-92. [78] Volc D, Poewe W, Kutzelnigg A, Lührs P, Thun-Hohenstein C, Schneeberger A, Galabova G, Majbour N, Vaikath N, El-Agnaf O, Winter D, Mihailovska E, Mairhofer A, Schwenke C, Staffler G, Medori R. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson's disease:a randomised, single-blinded, phase 1 trial[J]. Lancet Neurol, 2020, 19:591-600. [79] Butler DC, Joshi SN, Genst E, Baghel AS, Dobson CM, Messer A. Bifunctional anti-non-amyloid component α-synuclein nanobodies are protective in situ[J]. PLoS One, 2016, 11:e0165964. [80] Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model[J]. NPJ Parkinsons Dis, 2018, 4:25. [81] Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE, Steece-Collier K, Daley BF, Booms A, Lipton J, Welch M, Berman M, Jandreski L, Graham D, Weihofen A, Celano S, Schulz E, Cole-Strauss A, Luna E, Quach D, Mohan A, Bennett CF, Swayze EE, Kordasiewicz HB, Luk KC, Paumier KL. alpha-Synuclein antisense oligonucleotides as a disease:modifying therapy for Parkinson's disease[J]. JCI Insight, 2021, 6:e135633. [82] Benskey MJ, Sellnow RC, Sandoval IM, Sortwell CE, Lipton JW, Manfredsson FP. Silencing alpha synuclein in mature nigral neurons results in rapid neuroinflammation and subsequent toxicity[J]. Front Mol Neurosci, 2018, 11:36. [83] Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31:397-405. [84] Liu L, Li Y, Peng H, Liu R, Ji W, Shi Z, Shen J, Ma G, Zhang X. Targeted exosome coating gene-chem nanocomplex as "nanoscavenger" for clearing α-synuclein and immune activation of Parkinson's disease[J]. Sci Adv, 2020, 6:eaba3967. [85] Kantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, Huang ZY, Murphy S, Chiba-Falek O. Downregulation of SNCA expression by targeted editing of DNA methylation:a potential strategy for precision therapy in PD[J]. Mol Ther, 2018, 26:2638-2649. [86] Alarcón-Arís D, Recasens A, Galofré M, Carballo-Carbajal I, Zacchi N, Ruiz-Bronchal E, Pavia-Collado R, Chica R, FerrésCoy A, Santos M, Revilla R, Montefeltro A, Fari?as I, Artigas F, Vila M, Bortolozzi A. Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery:potential therapy for Parkinson's disease[J]. Mol Ther, 2018, 26:550-567. [87] Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM, Nie EH, Makani S, Tian N, Castillo PE, Buchman VL, Chandra SS. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction[J]. Proc Natl Acad Sci USA, 2010, 107:19573-19578. [88] El-Turk F, Newby FN, Genst ED, Guilliams T, Sprules T, Mittermaier A, Dobson CM, Vendruscolo M. Structural effects of two camelid nanobodies directed to distinct C-terminal epitopes on alpha-synuclein[J]. Biochemistry, 2016, 55:3116-3122. [89] Moloney TC, Hyland R, O'Toole D, Paucard A, Kirik D, O'Doherty A, Gorman AM, Dowd E. Heat shock protein 70 reduces α-synuclein-induced predegenerative neuronal dystrophy in the α-synuclein viral gene transfer rat model of Parkinson's disease[J]. CNS Neurosci Ther, 2014, 20:50-58. [90] Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, Beagan J, McLean JR, Izen SC, Perez-Torres E, Hallett PJ, Isacson O. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons[J]. Neurobiol Dis, 2015, 82:495-503. [91] Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L. Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration[J]. Brain, 2013, 136(Pt 7):2130-2146. [92] Angelopoulou E, Paudel YN, Piperi C. miR-124 and Parkinson's disease:a biomarker with therapeutic potential[J].Pharmacol Res, 2019, 150:104515. [93] Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein:pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease[J]. Neurobiol Dis, 2018, 109(Pt B):249-257. [94] Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, Bickford PC. Fractalkine over expression suppresses α-synuclein-mediated neurodegeneration[J]. Mol Ther, 2015, 23:17-23. [95] Sandoval IM, Marmion DJ, Meyers KT, Manfredsson FP. Gene therapy to modulate alpha-synuclein in synucleinopathies[J]. J Parkinsons Dis, 2021, 11(s2):S189-197. [96] Lautenschl?ger J, Kaminski CF, Kaminski Schierle GS. alpha-Synuclein:regulator of exocytosis, endocytosis, or both[J]?Trends Cell Biol, 2017, 27:468-479. [97] Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW.Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease[J]. Immunobiology, 2014, 219:836-844. [98] Schaser AJ, Osterberg VR, Dent SE, Stackhouse TL, Wakeham CM, Boutros SW, Weston LJ, Owen N, Weissman TA, Luna E, Raber J, Luk KC, McCullough AK, Woltjer RL, Unni VK. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders[J]. Sci Rep, 2019, 9:10919. [99] Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis[J]. J Neurosci, 2002, 22:3090-3099. |