[1] Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease[J]. Nat Rev Neurol, 2019, 15:234-242. [2] Xu W, Zhang C, Deeb W, Patel B, Wu Y, Voon V, Okun MS, Sun B. Deep brain stimulation for Tourette's syndrome[J].Transl Neurodegener, 2020, 9:4. [3] Rodrigues FB, Duarte GS, Prescott D, Ferreira J, Costa J. Deep brain stimulation for dystonia[J]. Cochrane Database Syst Rev, 2019, 1:CD012405. [4] Shanker V. Essential tremor:diagnosis and management[J].BMJ, 2019, 366:l4485. [5] Jiang HJ, Zheng Z, Zhu JM. Research progress of closed-loop deep brain stimulation in the treatment of Parkinson's disease[J]. Zhonghua Shen Jing Wai Ke Za Zhi, 2019, 35:743-746.[蒋鸿杰,郑喆,朱君明.闭环式脑深部电刺激术在帕金森病治疗中的研究进展[J].中华神经外科杂志, 2019, 35:743-746.] [6] Beudel M, Brown P. Adaptive deep brain stimulation in Parkinson's disease[J]. Parkinsonism Relat Disord, 2016, 22 Suppl 1:S123-126. [7] Giannicola G, Marceglia S, Rossi L, Mrakic-Sposta S, Rampini P, Tamma F, Cogiamanian F, Barbieri S, Priori A. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease[J]. Exp Neurol, 2010, 226:120-127. [8] Beudel M, Oswal A, Jha A, Foltynie T, Zrinzo L, Hariz M, Limousin P, Litvak V. Oscillatory beta power correlates with akinesia-rigidity in the Parkinsonian subthalamic nucleus[J].Mov Disord, 2017, 32:174-175. [9] Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ, Hill BC, Blumenfeld Z, Kilbane C, Mantovani A, Henderson JM, Bront?-Stewart H. Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson's disease[J]. Clin Neurophysiol, 2017, 128:128-137. [10] Syrkin-Nikolau J, Koop MM, Prieto T, Anidi C, Afzal MF, Velisar A, Blumenfeld Z, Martin T, Trager M, Bronte-Stewart H. Subthalamic neural entropy is a feature of freezing of gait in freely moving people with Parkinson's disease[J]. Neurobiol Dis, 2017, 108:288-297. [11] Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson's disease[J]. Mov Disord, 2018, 33:1834-1843. [12] Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced Parkinson disease[J]. Ann Neurol, 2013, 74:449-457. [13] Pi?a-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM, Little S, Brown P, Beudel M. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J].Brain Stimul, 2020, 13:1507-1516. [14] Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, Yi G, Cao X, Yang A, Meng F, Ye J, Liu H, Zhang J, Sui Y, Li L. Automatic sleep stage classification based on subthalamic local field potentials[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27:118-128. [15] Marceglia S, Prenassi M, Galbiati TF, Porta M, Zekaj E, Priori A, Servello D. Thalamic local field potentials are related to longterm DBS effects in Tourette syndrome[J]. Front Neurol, 2021, 12:578324. [16] Thenaisie Y, Palmisano C, Canessa A, Keulen BJ, Capetian P, Jiménez MC, Bally JF, Manferlotti E, Beccaria L, Zutt R, Courtine G, Bloch J, van der Gaag NA, Hoffmann CF, Moraud EM, Isaias IU, Contarino MF. Towards adaptive deep brain stimulation:clinical and technical notes on a novel commercial device for chronic brain sensing[J]. J Neural Eng, 2021, 18:042002. [17] Nakajima A, Shimo Y, Fuse A, Tokugawa J, Hishii M, Iwamuro H, Umemura A, Hattori N. Case report:chronic adaptive deep brain stimulation personalizing therapy based on Parkinsonian state[J]. Front Hum Neurosci, 2021, 15:702961. [18] Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device:current status and future prospects[J]. Expert Rev Med Devices, 2021, 18:1093-1105. [19] Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson's disease and related disorders[J]. Expert Rev Med Devices, 2021, 18:319-332. [20] Buijink AWG, Pi?a-Fuentes DA, Stam MJ, Bot M, Schuurman PR, van den Munckhof P, van Rootselaar AF, de Bie RMA, Beudel M. Thalamic local field potentials recorded using the deep brain stimulation pulse generator[J]. Clin Neurophysiol Pract, 2022, 7:103-106. [21] Skoch J, Adelson PD, Bhatia S, Greiner HM, Rydenhag B, Scavarda D, Mangano FT. Subdural grid and depth electrode monitoring in pediatric patients[J]. Epilepsia, 2017, 58 Suppl 1:56-65. [22] Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease:networks, models and treatments[J]. Trends Neurosci, 2007, 30:357-364. [23] Rowland NC, De Hemptinne C, Swann NC, Qasim S, Miocinovic S, Ostrem JL, Knight RT, Starr PA. Task-related activity in sensorimotor cortex in Parkinson's disease and essential tremor:changes in beta and gamma bands[J]. Front Hum Neurosci, 2015, 9:512. [24] de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease[J]. Proc Natl Acad Sci USA, 2013, 110:4780-4785. [25] Connolly MJ, Cole ER, Isbaine F, de Hemptinne C, Starr PA, Willie JT, Gross RE, Miocinovic S. Multi-objective data-driven optimization for improving deep brain stimulation in Parkinson's disease[J]. J Neural Eng, 2021, 18:046046. [26] Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism[J].Neuron, 2011, 72:370-384. [27] Hwang BY, Salimpour Y, Tsehay YK, Anderson WS, Mills KA. Perspective:phase amplitude coupling-based phase-dependent neuromodulation in Parkinson's disease[J]. Front Neurosci, 2020, 14:558967. [28] Gong R, Wegscheider M, Mühlberg C, Gast R, Fricke C, Rumpf JJ, Nikulin VV, Kn?sche TR, Classen J. Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson's disease derived from scalp EEG[J]. Brain, 2021, 144:487-503. [29] Camara C, Warwick K, Bru?a R, Aziz T, del Pozo F, Maestú F. A fuzzy inference system for closed-loop deep brain stimulation in Parkinson's disease[J]. J Med Syst, 2015, 39:155. [30] Graupe D, Basu I, Tuninetti D, Vannemreddy P, Slavin KV. Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography[J]. Neurol Res, 2010, 32:899-904. [31] Yamamoto T, Katayama Y, Ushiba J, Yoshino H, Obuchi T, Kobayashi K, Oshima H, Fukaya C. On-demand control system for deep brain stimulation for treatment of intention tremor[J].Neuromodulation, 2013, 16:230-235. [32] Basu I, Graupe D, Tuninetti D, Shukla P, Slavin KV, Metman LV, Corcos DM. Pathological tremor prediction using surface electromyogram and acceleration:potential use in'ON-OFF'demand driven deep brain stimulator design[J]. J Neural Eng, 2013, 10:036019. [33] Askari S, Zhang M, Won DS. An EMG-based system for continuous monitoring of clinical efficacy of Parkinson's disease treatments[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2010:98-101. [34] Arlotti M, Rosa M, Marceglia S, Barbieri S, Priori A. The adaptive deep brain stimulation challenge[J]. Parkinsonism Relat Disord, 2016, 28:12-17. [35] Rojas Cabrera JM, Price JB, Rusheen AE, Goyal A, Jondal D, Barath AS, Shin H, Chang SY, Bennet KE, Blaha CD, Lee KH, Oh Y. Advances in neurochemical measurements:a review of biomarkers and devices for the development of closed-loop deep brain stimulation systems[J]. Rev Anal Chem, 2020, 39:188-199. [36] Herron JA, Thompson MC, Brown T, Chizeck HJ, Ojemann JG, Ko AL. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient[J]. J Neurosurg, 2017, 127:580-587. [37] van Uem JM, Isaacs T, Lewin A, Bresolin E, Salkovic D, Espay AJ, Matthews H, Maetzler W. A viewpoint on wearable technology-enabled measurement of wellbeing and health-related quality of life in Parkinson's disease[J]. J Parkinsons Dis, 2016, 6:279-287. [38] Kubota KJ, Chen JA, Little MA. Machine learning for large-scale wearable sensor data in Parkinson's disease:concepts, promises, pitfalls, and futures[J]. Mov Disord, 2016, 31:1314-1326. [39] Dafsari HS, Wei? L, Silverdale M, Rizos A, Reddy P, Ashkan K, Evans J, Reker P, Petry-Schmelzer JN, Samuel M, Visser-Vandewalle V, Antonini A, Martinez-Martin P, Ray-Chaudhuri K, Timmermann L; EUROPAR and the IPMDS Non Motor PD Study Group. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson's disease[J]. Brain Stimul, 2018, 11:867-874. [40] Li D, Zhang C, Gault J, Wang W, Liu J, Shao M, Zhao Y, Zelji K, Gao G, Sun B. Remotely programmed deep brain stimulation of the bilateral subthalamic nucleus for the treatment of primary Parkinson disease:a randomized controlled trial investigating the safety and efficacy of a novel deep brain stimulation system[J]. Stereotact Funct Neurosurg, 2017, 95:174-182. [41] Ferreira JJ, Godinho C, Santos AT, Domingos J, Abreu D, Lobo R, Gon?alves N, Barra M, Larsen F, Fagerbakke ?, Akeren I, Wangen H, Serrano JA, Weber P, Thoms A, Meckler S, Sollinger S, van Uem J, Hobert MA, Maier KS, Matthew H, Isaacs T, Duffen J, Graessner H, Maetzler W. Quantitative home-based assessment of Parkinson's symptoms:the SENSE-PARK feasibility and usability study[J]. BMC Neurol, 2015, 15:89. [42] Lakshminarayana R, Wang D, Burn D, Chaudhuri KR, Cummins G, Galtrey C, Hellman B, Pal S, Stamford J, Steiger M, Williams A; SMART-PD Investigators. Smartphone-and internet-assisted self-management and adherence tools to manage Parkinson's disease (SMART-PD):study protocol for a randomised controlled trial (v7; 15 August 2014)[J]. Trials, 2014, 15:374. [43] Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, Elson MJ, Spear KL, Glidden AM, Little MA, Terzis A, Dorsey ER, Saria S. Using smartphones and machine learning to quantify Parkinson disease severity:the mobile Parkinson disease score[J]. JAMA Neurol, 2018, 75:876-880. [44] Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease[J]?Ann NY Acad Sci, 2012, 1265:9-24. [45] Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A, Cortese F, Rampini PM, Priori A. Adaptive deep brain stimulation in a freely moving Parkinsonian patient[J]. Mov Disord, 2015, 30:1003-1005. [46] Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D, Bestmann S, Aziz T, Cheeran B, Zrinzo L, Hariz M, Hyam J, Limousin P, Foltynie T, Brown P. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting[J]. J Neurol Neurosurg Psychiatry, 2016, 87:1388-1389. [47] Little S, Beudel M, Zrinzo L, Foltynie T, Limousin P, Hariz M, Neal S, Cheeran B, Cagnan H, Gratwicke J, Aziz TZ, Pogosyan A, Brown P. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2016, 87:717-721. [48] Chen CC, Brücke C, Kempf F, Kupsch A, Lu CS, Lee ST, Tisch S, Limousin P, Hariz M, Brown P. Deep brain stimulation of the subthalamic nucleus:a two-edged sword[J]. Curr Biol, 2006, 16:R952-953. [49] Hirschmann J, ?zkurt TE, Butz M, Homburger M, Elben S, Hartmann CJ, Vesper J, Wojtecki L, Schnitzler A. Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson's disease[J]. Neuroimage, 2013, 68:203-213. [50] Cernera S, Alcantara JD, Opri E, Cagle JN, Eisinger RS, Boogaart Z, Pramanik L, Kelberman M, Patel B, Foote KD, Okun MS, Gunduz A. Wearable sensor-driven responsive deep brain stimulation for essential tremor[J]. Brain Stimul, 2021, 14:1434-1443. [51] Opri E, Cernera S, Molina R, Eisinger RS, Cagle JN, Almeida L, Denison T, Okun MS, Foote KD, Gunduz A. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor[J]. Sci Transl Med, 2020, 12:eaay7680. [52] Ferleger BI, Houston B, Thompson MC, Cooper SS, Sonnet KS, Ko AL, Herron JA, Chizeck HJ. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients[J].J Neural Eng, 2020, 17:056026. [53] Pi?a-Fuentes D, van Dijk JMC, Drost G, van Zijl JC, van Laar T, Tijssen MAJ, Beudel M. Direct comparison of oscillatory activity in the motor system of Parkinson's disease and dystonia:a review of the literature and meta-analysis[J]. Clin Neurophysiol, 2019, 130:917-924. [54] Pi?a-Fuentes D, Beudel M, Van Zijl JC, Van Egmond ME, Oterdoom DLM, Van Dijk JMC, Tijssen MAJ. Low-frequency oscillation suppression in dystonia:implications for adaptive deep brain stimulation[J]. Parkinsonism Relat Disord, 2020, 79:105-109. [55] Scheller U, Lofredi R, van Wijk BCM, Saryyeva A, Krauss JK, Schneider GH, Kroneberg D, Krause P, Neumann WJ, Kühn AA. Pallidal low-frequency activity in dystonia after cessation of longterm deep brain stimulation[J]. Mov Disord, 2019, 34:1734-1739. [56] Johnson V, Wilt R, Gilron R, Anso J, Perrone R, Beudel M, Pi?a-Fuentes D, Saal J, Ostrem JL, Bledsoe I, Starr P, Little S. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations[J]. Exp Neurol, 2021, 345:113825. [57] Bour LJ, Ackermans L, Foncke EM, Cath D, van der Linden C, Visser Vandewalle V, Tijssen MA. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome:report of three cases[J]. Clin Neurophysiol, 2015, 126:1578-1588. [58] Marceglia S, Rosa M, Servello D, Porta M, Barbieri S, Moro E, Priori A. Adaptive Deep Brain Stimulation (aDBS) for Tourette syndrome[J]. Brain Sci, 2017, 8:4. [59] Shute JB, Okun MS, Opri E, Molina R, Rossi PJ, Martinez-Ramirez D, Foote KD, Gunduz A. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome[J]. Neuroimage Clin, 2016, 12:165-172. [60] Molina R, Okun MS, Shute JB, Opri E, Rossi PJ, Martinez-Ramirez D, Foote KD, Gunduz A. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome:proof of concept[J]. J Neurosurg, 2018, 129:308-314. [61] Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK. Deep brain stimulation:current challenges and future directions[J]. Nat Rev Neurol, 2019, 15:148-160. |