[1]杨丹, 崔雅忠, 张倩, 等. 1型与2型糖尿病大鼠周围神经病变的比较[J]. 基础医学与临床, 2019, 39:27-31. [2]骆时木, 欧阳航, 蒋燕成, 等. TCF7L2 rs290481基因多态性与2型糖尿病合并冠心病相关[J]. 基础医学与临床, 2020, 40:1484-1488. [3]Maghbooli Z, Emamgholipour S, Aliakbar S, et al. Differential expressions of Sirt1, Sirt3, and Sirt4 in peripheral blood mononuclear cells from patients with type 2 diabetic retinopathy[J]. Arch Physiol Biochem, 2020, 126: 363-368. [4]Ogura Y, Kitada M, Xu J, et al. Cd38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular nad(+)/nadh ratio and sirt3 activity in renal tubular cells in diabetic rats[J]. Aging (Albany NY), 2020, 12: 11325-11336. [5]Carrico C, Meyer JG, He W, et al. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications[J]. Cell Metab, 2018, 27: 497-512. [6]Valaiyapathi B, Gower B, Ashraf AP. Pathophysiology of type 2 diabetes in children and adolescents[J]. Curr Diabetes Rev, 2020, 16: 220-229. [7]Yuxin H, Cuiping J, Wen T, et al. Comparison of gastrointestinal adverse events with different doses of metformin in the treatment of elderly people with type 2 diabetes[J]. J Clin Pharm Ther, 2020, 45: 470-476. doi: 10.1111/jcpt.13087. [8]Zhang J, Xiang H, Liu J, et al. Mitochondrial sirtuin 3: new emerging biological function and therapeutic target[J]. Theranostics, 2020, 10: 8315-8342. [9]Cortes-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, et al. Interplay between nadh oxidation by complex i, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165801. doi: 10.1016/j.bbadis.2020.165801. [10]Dai SH, Chen T, Wang YH, et al. Sirt3 protects cortical neurons against oxidative stress via regulating mitochon-drial Ca2+ and mitochondrial biogenesis[J]. Int J Mol Sci, 2014, 15: 14591-14609. doi: 10.3390/ijms150814591. [11]Gao P, Jiang Y, Wu H, et al. Inhibition of mitochondrial calcium overload by sirt3 prevents obesity- or age-related whitening of brown adipose tissue[J]. Diabetes, 2020, 69: 165-180. [12]Gao Z, Wang Z, Zhu H, et al. Hyperinsulinemia contributes to impaired-glucose-tolerance-induced renal injury via mir-7977/sirt3 signaling[J]. Ther Adv Chronic Dis, 2020, 11: 2040622320916008. doi: 10.1177/2040622320916008. [13]He F, Huang Y, Song Z, et al. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance[J]. J Exp Med, 2021, 218.doi: 10.1084/jem.20201416. [14]Lantier L, Williams AS, Williams IM, et al. Sirt3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice[J]. Diabetes, 2015, 64: 3081-3092. doi: 10.2337/db14-1810. [15]Ogura Y, Kitada M, Monno I, et al. Renal mitochondrial oxidative stress is enhanced by the reduction of sirt3 activity, in zucker diabetic fatty rats[J]. Redox Rep, 2018, 23: 153-159. [16]Rovira-Llopis S, Banuls C, Diaz-Morales N, et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications[J]. Redox Biol, 2017, 11: 637-645. [17]Vassilopoulos A, Pennington JD, Andresson T, et al. Sirt3 deacetylates atp synthase f1 complex proteins in response to nutrient- and exercise-induced stress[J]. Antioxid Redox Signal, 2014, 21: 551-564. doi: 10.1089/ars.2013.5420. [18]Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease[J]. Circulation, 2018, 137: 119-129. [19]Yang S, Xu M, Meng G, et al. Sirt3 deficiency delays diabetic skin wound healing via oxidative stress and necroptosis enhancement[J]. J Cell Mol Med, 2020, 24: 4415-4427. [20]Yerra VG, Areti A, Kumar A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation[J]. Mol Neurobiol, 2017, 54: 2301-2312. [21]Yu W, Gao B, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of foxo3a-parkin-mediated mitophagy[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863: 1973-1983. [22]Zeng H, He X, Chen JX. Endothelial sirtuin 3 dictates glucose transport to cardiomyocyte and sensitizes pressure overload-induced heart failure[J]. J Am Heart Assoc, 2020, 9: e015895. doi: 10.1161/JAHA.120.015895. [23]Zhang Y, Bharathi SS, Rardin MJ, et al. Sirt3 and sirt5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-coa dehydrogenase[J]. PLoS One, 2015, 10: e0122297. doi: 10.1371/journal.pone.0122297. [24]Zhao H, Matsuzaka T, Nakano Y, et al. Elovl6 defici-ency improves glycemic control in diabetic db/db mice by expanding beta-cell mass and increasing insulin secretory capacity[J]. Diabetes, 2017, 66: 1833-1846. [25]Zhou Y, Chung ACK, Fan R, et al. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction[J]. Antioxid Redox Signal, 2017, 27: 962-976. |