[1] |
Francque S, Szabo G, Abdelmalek MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activ-ated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 24-39.
|
[2] |
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19: 629-465.
|
[3] |
Li Z, Geng J, Xie B, et al. Dihydromyricetin alleviates pulmonary fibrosis by regulating abnormal fibroblasts through the STAT3/p-STAT3/GLUT1 signaling pathway[J]. Front Pharmacol, 2022, 13: 834604.doi:10.3389/fphar.2022.834604.
|
[4] |
Xu Q, Mei S, Nie F, et al. The role of macrophage-fibroblast interaction in lipopolysaccharide-induced pulmonary fibrosis: an acceleration in lung fibroblast aerobic glycolysis[J]. Lab Invest, 2022, 102: 432-439.
|
[5] |
Yin X, Choudhury M, Kang JH, et al. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β[J]. Sci Signal, 2019, 12:eaax406.doi:10.1126/scisignal.aax4067.
|
[6] |
Weckerle J, Picart-Armada S, Klee S, et al. Mapping the metabolomic and lipidomic changes in the bleomycin model of pulmonary fibrosis in young and aged mice[J]. Dis Model Mech, 2022, 15:dmm049105. doi:10.1242/dmm.049105.
|
[7] |
Kottmann RM, Kulkarni AA, Smolnycki KA, et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via ph-dependent activation of transforming growth factor-β[J]. Am J Respir Crit Care Med, 2012, 186: 740-751.
|
[8] |
Wu A, Lee D, Xiong WC. Lactate metabolism, signaling, and function in brain development, synaptic plasticity, angiogenesis, and neurodegenerative diseases[J]. Int J Mol Sci, 2023, 24:13398. doi:10.3390/ijms241713398.
|
[9] |
Kheirollahi V, Wasnick RM, Biasin V, et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis[J]. Nat Commun, 2019, 10: 2987. doi:10.1038/s41467-019-10839-0
|
[10] |
Qian W, Xia S, Yang X, et al. Complex involvement of the extracellular matrix, immune effect, and lipid metabolism in the development of idiopathic pulmonary fibrosis[J]. Front Mol Biosci, 2021, 8: 800747.doi:10.3389/fmolb.2021.800747.
|
[11] |
Hamanaka RB, Mutlu GM. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer[J]. Amino Acids, 2021, 53: 1851-1862.
|
[12] |
O'Leary EM, Tian Y, Nigdelioglu R, et al. TGF-β promotes metabolic reprogramming in lung fibroblasts via mTORC1-dependent ATF4 activation[J]. Am J Respir Cell Mol Biol, 2020, 63: 601-612.
|
[13] |
Miao Y, Geng Y, Yang L, et al. Morin inhibits the transformation of fibroblasts towards myofibroblasts through regulating “PPAR-γ-glutaminolysis-DEPTOR” pathway in pulmonary fibrosis[J]. J Nutr Biochem, 2022, 101: 108923.doi:10.1016/j.jnutbio.2021.108923.
|
[14] |
Schwörer S, Berisa M, Violante S, et al. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress[J]. EMBO J, 2020, 39: e103334.doi:10.15252/embj.2019103334.
|
[15] |
Elzakra N, Kim Y. HIF-1α metabolic pathways in human cancer[J]. Adv Exp Med Biol, 2021, 1280: 243-260.
|
[16] |
Yang L, Gilbertsen A, Xia H, et al. Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway[J]. JCI Insight, 2023, 8:e163820. doi:10.1172/jci.insight.163820.
|
[17] |
Hernandez-Quiles M, Broekema MF. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action[J]. Front Endocrinol (Lausanne), 2021, 12: 624112. doi:10.3389/fendo.2021.624112.
|
[18] |
Ligresti G, Raslan AA, Hong J, et al. Mesenchymal cells in the lung: evolving concepts and their role in fibrosis[J]. Gene, 2023, 859: 147142.doi:10.1016/j.gene.2022.147142.
|
[19] |
Tseng KY, Liu KH, Wu HM, et al. The fatty acid synthase inhibitor C75 differentially affects the adipogenic differentiation of multipotent cells and preadipocytes[J]. FEBS Lett, 2022, 596: 3191-3202.
|
[20] |
Ge J, Cui H, Xie N, et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mtor activation and proline hydroxylation[J]. Am J Respir Cell Mol Biol, 2018, 58: 378-390.
|
[21] |
Arlt B, Mastrobuoni G, Wuenschel J, et al. Inhibiting PHGDH with NCT-503 reroutes glucose-derived carbons into the TCA cycle, independently of its on-target effect[J]. J Enzyme Inhib Med Chem, 2021, 36: 1282-1289.
|