Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (11): 1733-1737.doi: 10.16352/j.issn.1001-6325.2023.11.1733
• Mini Reviews • Previous Articles Next Articles
JIA Nan, WANG Zhilian*
Received:
2022-11-24
Revised:
2023-06-01
Online:
2023-11-05
Published:
2023-10-30
Contact:
*ZL2009wang@163.com
CLC Number:
JIA Nan, WANG Zhilian. CALCOCO1 in the progression of malignant tumors[J]. Basic & Clinical Medicine, 2023, 43(11): 1733-1737.
[1] | Stefely JA, Zhang Y, Freiberger EC, et al. Mass spectrometry proteomics reveals a function for mammalian CALCOCO1 in MTOR-regulated selective autophagy[J]. Autophagy,2020,16:2219-2237. |
[2] | Hirose S, Waku T, Tani M, et al. NRF3 activates mTORC1 arginine-dependently for cancer cell viability[J]. iScience, 2023,26:106045. Published 2023 Jan 25. doi:10.1016/j.isci.2023.106045. |
[3] | Ma L, Zhang R, Li D, et al. Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway[J]. Chem Biol Interact, 2021,349:109659.doi:. |
[4] | Park HS, Song JW, Park JH, et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation[J]. Autophagy, 2021,17:2549-2564. |
[5] | Nthiga TM, Kumar Shrestha B, Sjøttem E, et al. CALCOCO1 acts with VAMP-associated proteins to med-iate ER-phagy[J]. EMBO J, 2020,39:e103649.doi:10.15252/embj.2019103649. |
[6] | Nthiga TM, Shrestha BK, Lamark T, et al. CALCOCO1 is a soluble reticulophagy receptor[J]. Autophagy, 2020;16:1729-1731. |
[7] | Jatana N, Ascher DB, Pires DEV, et al. Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations[J]. Autophagy, 2020,16:239-255. |
[8] | Huber J, Obata M, Gruber J, et al. An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5[J]. Autophagy, 2020,16:256-270. |
[9] | Nguyen TN, Padman BS, Zellner S, et al. ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system[J]. Mol Cell, 2021,81:2013-2030. |
[10] | Mizushima N. The ATG conjugation systems in autophagy[J]. Curr Opin Cell Biol, 2020,63:1-10. |
[11] | Khosrowabadi E, Rivinoja A, Risteli M, et al. SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes[J]. Cell Mol Life Sci, 2021,78:6283-6304. |
[12] | Gohel R, Rahman A, Lõrincz P, et al. Selective auto-phagy and Golgi quality control in <i>Drosophila</i>[J]. Autophagy, 2022,18:2508-2509. |
[13] | Rahman A, Lõrincz P, Gohel R, et al. GMAP is an Atg8a-interacting protein that regulates Golgi turnover in Drosophila[J]. Cell Rep, 2022,39:110903. doi:10.1016/j.celrep.2022.110903. |
[14] | Haukedal H, Corsi GI, Gadekar VP, et al. Golgi fragmentation-One of the earliest organelle phenotypes in Alzheimer's disease neurons[J]. Front Neurosci, 2023,17:1120086. doi:10.3389/fnins.2023.1120086. |
[15] | Yamamoto A. Go for the Golgi: eating selectively with Calcoco1[J]. J Cell Biol, 2021,220. doi:10.1083/jcb.202105005. |
[16] | Navarro AP, Cheeseman IM. Identification of a Golgi-localized peptide reveals a minimal Golgi-targeting motif[J]. Mol Biol Cell, 2022,33:ar110. doi:10.1091/mbc.E22-03-0091. |
[17] | Nthiga TM, Kumar Shrestha B, Lamark T, et al. The soluble reticulophagy receptor CALCOCO1 is also a Golgiphagy receptor[J]. Autophagy, 2021,17:2051-2052. |
[18] | Nthiga TM, Shrestha BK, Bruun JA, et al. Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy[J]. J Cell Biol, 2021;220:e202006128. doi:10.1083/jcb.202006128. |
[19] | Liu Y, Zhao R, Fang S, et al. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways[J]. Fundam Clin Pharmacol, 2021,35:156-164. |
[20] | Segura S, Stolnicu S, Boros M, et al. mTOR pathway activation assessed by immunohistochemistry in cervical biopsies of HPV-associated endocervical adenocarcinomas (HPVA): correlation with silva invasion patterns[J]. Appl Immunohistochem Mol Morphol,2021,29:527-533. |
[21] | Brown H, Chung M, Üffing A, et al. Structure-based design of stapled peptides that bind GABARAP and inhibit autophagy[J]. J Am Chem Soc, 2022,144:14687-14697. |
[22] | Gray JP, Uddin MN, Chaudhari R, et al. Directed evolution of cyclic peptides for inhibition of autophagy[J]. Chem Sci, 2021,12:3526-3543. |
[23] | Ma R, Zhang Z, Xu J, et al. Poricoic acid A induces apoptosis and autophagy in ovarian cancer via modulating the mTOR/p70s6k signaling axis[J]. Braz J Med Biol Res, 2021,54:e11183. doi:10.1590/1414-431X2021e11183. |
[24] | Muranen TA, Greco D, Fagerholm R, et al. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications[J]. Breast Cancer Res, 2011,13. doi:10.1186/bcr3015. |
[25] | Zhang L, He A, Chen B, et al. A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes[J]. Genome Res, 2020,30:155-163. |
[1] | Zulipiya·ABULA, ZHAO Qiang, ZHANG Taimin, LI Tian. Marein alleviates high glucose-induced damage of rat myocardial cell line H9c2 [J]. Basic & Clinical Medicine, 2024, 44(9): 1269-1273. |
[2] | XIA Yujia, YANG Zhenli, LIU Yuqin. Preclinical translational research and application of tumor organoids [J]. Basic & Clinical Medicine, 2024, 44(9): 1214-1218. |
[3] | LIU Baoqing, HUANG Rong, LU Yan, LI Kai, ZHANG Ning, LIU Changzheng, SONG Wei. Progress of gastric cancer organoids in basic research and clinical application [J]. Basic & Clinical Medicine, 2024, 44(9): 1219-1222. |
[4] | ZHOU Changdong, LIN Yang, SUN Kai, TIAN Yuxin. Knockdown of lncRNA UCA1 reduces gemcitabine resistance of human bladder cancer cell line T24 [J]. Basic & Clinical Medicine, 2024, 44(8): 1113-1119. |
[5] | LI Yang, ZHU Lei. Eukaryotic elongation factor 2 kinase is a potential new target for the treatment of tumors [J]. Basic & Clinical Medicine, 2024, 44(7): 1039-1043. |
[6] | CHEN Xiaotian, CHEN Chong, LUO Yunping. Impact of MAFB on polarization and function of tumor associated macrophages [J]. Basic & Clinical Medicine, 2024, 44(7): 965-973. |
[7] | ZHOU Yue, TONG Anli. Immune microenvironment of pheochromocytomas and paragangliomas [J]. Basic & Clinical Medicine, 2024, 44(6): 742-747. |
[8] | ZHANG Liyuan, DU Hanze, PAN Hui. Progress in drug therapy for hypothalamic obesity [J]. Basic & Clinical Medicine, 2024, 44(5): 729-732. |
[9] | WANG Tingting, GUO Dan, LU Junyang, XU Lai, DONG Haitao, LIN Dianxin, XIAO Yi. Analysis of cell mutation types of colorectal neuroendocrine tumors [J]. Basic & Clinical Medicine, 2024, 44(4): 523-527. |
[10] | ZHANG Yuling, ZHANG Ke, XU Ting, ZHANG Qing. Expression levels and clinical significance of autophagy related proteins in placenta tissues of pregnant women with fetal growth restriction [J]. Basic & Clinical Medicine, 2024, 44(4): 528-532. |
[11] | YANG Kaifei, ZHU Jingge, ZHANG Yangyang, ZHAO Junguo, GAO Yuyue, HU Huanhuan, JI Guojie. Effect of sorafenib induced apoptosis and autophagy on drug resistance in HeLa cells [J]. Basic & Clinical Medicine, 2024, 44(4): 467-473. |
[12] | LEI Shaoyuan, LI Yulong, SUN Fei, LIU Hongjun, WU Yue, GUO Yansu. The epidemiology and prediction of brain tumors incidence and mortality in China [J]. Basic & Clinical Medicine, 2024, 44(4): 454-458. |
[13] | WU Yuhong, YU Caiyuan, YE Shicai. Research progress on the role of NMES1 gene in malignant tumors [J]. Basic & Clinical Medicine, 2024, 44(3): 403-407. |
[14] | NAN Lu, GUO Menjie, GAO Yanan, JIA Hongyan. Research progress on the mechanism of annexin A family members in breast cancer [J]. Basic & Clinical Medicine, 2024, 44(3): 393-397. |
[15] | CHEN Xue, LUO Tian, WEI Chaojun. Advances in the role of lysophosphatidyl-choline acyltransferase 1 in tumors [J]. Basic & Clinical Medicine, 2024, 44(2): 256-259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||