Basic & Clinical Medicine ›› 2025, Vol. 45 ›› Issue (8): 999-1009.doi: 10.16352/j.issn.1001-6325.2025.08.0999
• Special Issues:Urinary Omics • Previous Articles Next Articles
CHEN Lingyun1, CHEN Wensong2, SUN Qinqiang2, ZI Jin2*
Received:2025-03-25
Revised:2025-06-13
Online:2025-08-05
Published:2025-07-11
Contact:
*zij@genomics.cn
CLC Number:
CHEN Lingyun, CHEN Wensong, SUN Qinqiang, ZI Jin. Progress in urinary metabolomics research technologies and applications in cancer diagnosis[J]. Basic & Clinical Medicine, 2025, 45(8): 999-1009.
| [1] Dunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chem Soc Rev, 2011, 40: 387-426. [2] Roberts LD, Souza AL, Gerszten RE, et al. Targeted metabolomics[J]. Curr Protoc Mol Biol, 2012, 98:2-24. doi:10.1002/0471142727.mb3002s98. [3] Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012, 13: 263-269. [4] Van QN, Veenstra TD, Issaq HJ. Metabolic profiling for the detection of bladder cancer[J]. Curr Urol Rep, 2011, 12: 34-40. [5] Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer[J]. J Biomark, 2015, 2015:981458. doi:10.1155/2015/981458. [6] Miller RC, Brindle E, Holman DJ, et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations[J]. Clin Chem, 2004, 50: 924-932. [7] Wei J, Gao Y. Early disease biomarkers can be found using animal models urine proteomics[J]. Expert Rev Proteomics, 2021, 18: 363-378. [8] Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—The Human Metabolome Database in 2013[J]. Nucleic Acids Res, 2012, 41: D801-D807. [9] Dettmer K, Aronov PA, Hammock BD. Mass spectrome-try-based metabolomics[J]. Mass Spectrom Rev, 2007, 26: 51-78. [10] Kumar BS, Chung BC, Kwon OS, et al. Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics[J]. J Appl Toxicol, 2012, 32: 505-520. [11] Trivedi DK, Iles RK. HILIC-MS-based shotgun metabolomic profiling of maternal urine at 9-23 weeks of gestation-establishing the baseline changes in the maternal metabolome[J]. Biomed Chromatogr, 2015, 29: 240-245. [12] Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics[J]. J Cell Physiol, 2012, 227: 2975-2981. [13] Slupsky CM, Rankin KN, Wagner J, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles[J]. Anal Chem, 2007, 79: 6995-7004. [14] Bondia-Pons I, Barri T, Hanhineva K, et al. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention[J]. Mol Nutr Food Res, 2013, 57: 412-422. [15] Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrome-try-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research[J]. Metabolomics, 2009, 5: 435-458. [16] Holm A, Aabenhus R. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review[J]. BMC Fam Pract, 2016, 17:72. doi:10.1186/s12875-016-0465-4. [17] Kuhara T. Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry[J]. J Chromatogr B Biomed Sci Appl, 2001, 758: 3-25. [18] Ryan D, Robards K, Prenzler PD, et al. Recent and potential developments in the analysis of urine: A review[J]. Anal Chim Acta, 2011, 684: 17-29. [19] Lenz EM, Bright J, Wilson ID, et al. Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects[J]. J Pharm Biomed Anal, 2004, 36: 841-849. [20] Roux A, Thévenot EA, Seguin F, et al. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Metabolomics, 2014, 11: 1095-1105. [21] Laparre J, Kaabia Z, Mooney M, et al. Impact of storage conditions on the urinary metabolomics fingerprint[J]. Anal Chim Acta, 2017, 951:99-107. [22] Lee SH, An JH, Park HM, et al. Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 887-888:8-18. [23] Rotter M, Brandmaier S, Prehn C, et al. Stability of targeted metabolite profiles of urine samples under different storage conditions[J]. Metabolomics, 2016, 13: 4. doi:10.1007/s11306-016-1137-z. [24] Khodadadi M, Pourfarzam M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-mass spectrometry[J]. Metabolomics, 2020, 16: 66. doi:10.1007/s11306-020-01687-x. [25] Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols[J]. Int J Epidemiol, 2008, 37: i23-i30. doi:10.1093/ije/dym281. [26] Eisinger SW, Schwartz M, Dam L, et al. Evaluation of the BD vacutainer plus urine C&S preservative tubes compared with nonpreservative urine samples stored at 4 ℃ and room temperature[J]. Am J Clin Pathol, 2013, 140: 306-313. [27] Stringer KA, Mckay RT, Karnovsky A, et al. Metabolo-mics and its application to acute lung diseases[J]. Front Immunol, 2016, 7:44. doi: 10.3389/fimmu.2016.00044. [28] Nagana Gowda GA, Raftery D. NMR-based metabolomics[J].Adv Exp Med Biol, 2021, 1280:19-37. [29] Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15: 473-484. [30] Martias C, Baroukh N, Mavel S, et al. Optimization of sample preparation for metabolomics exploration of urine, feces, blood and saliva in humans using combined NMR and UHPLC-HRMS platforms[J]. Molecules, 2021, 26: 4111. doi:10.3390/molecules26144111. [31] Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome[J]. PLoS One, 2013, 8: e73076, doi:10.1371/journal.pone.0016957. [32] Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research[J]. J Pharm Biomed Anal, 2014, 93:17-26. [33] Brezmes J, Llambrich M, Cumeras R, et al. Urine NMR metabolomics for precision oncology in colorectal cancer[J]. Int J Mol Sci, 2022, 23: 11171. doi: 10.3390/ijms231911171. [34] Emwas AH, Roy R, McKay RT, et al. NMR Spectros-copy for metabolomics research[J]. Metabolites, 2019, 9: 123. doi: 10.3390/metabo9070123. [35] Peng Y, Zhang Z, He L, et al. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges[J] Anal Bioanal Chem, 2024, 416: 2319-2334. [36] Emwas AH, Luchinat C, Turano P, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review[J]. Metabolomics, 2015, 11: 872-894. [37] Tomasz L, Przemys aw A, Tomasz K, et al. Analysis of VOCs in urine samples directed towards of bladder cancer detection[J] Molecules, 2022, 27: 5023. doi:10.3390/molecules27155023. [38] Cara O, Bianca A, Laneke L. Optimising a urinary extraction method for non-targeted GC-MS metabolomics[J] Sci Rep, 2023, 13: 17591. doi:10.1038/s41598-023-44690-7. [39] Chan ECY, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry[J]. Nat Protoc, 2011, 6: 1483-1499. [40] Moros G, Chatziioannou AC, Gika HG, et al. Investigation of The derivatization conditions for GC-MS metabolomics of biological samples[J]. Bioanalysis, 2016, 9: 53-65. [41] Kuhara T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism[J]. Mass Spectrom Rev, 2005, 24: 814-827. [42] Cala M, Aldana J, Sánchez J, et al. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: A pilot study[J]. J Pharm Biomed Anal, 2018, 152:234-241. [43] Eshima J, Ong S, Davis TJ, et al. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC×GC-TOFMS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1121:48-57. [44] Ming Y, Xiaoyan L, Xiaoyue T, et al. LC-MS based urine untargeted metabolomic analyses to identify and subdivide urothelial cancer[J].Front Oncol, 2023, 13:1160965. doi:10.3389/fonc.2023.1160965. [45] Rodríguez-Morató J, Pozo ÓJ, Marcos J. Targeting human urinary metabolome by LC-MS/MS: a review[J]. Bioanalysis, 2018, 10: 489-516. [46] Xie G, Wang L, Chen T, et al. A metabolite array technology for precision medicine[J]. Anal Chem, 2021, 93: 5709-5717. [47] Wang Y, Sun Y, Wang Y, et al. Urine metabolomics phenotyping and urinary biomarker exploratory in mild cognitive impairment and Alzheimer′s disease[J]. Front Aging Neurosci, 2023, 15:1273807. doi:10.3389/fnagi.2023.1273807. [48] Zhao S, Dawe M, Guo K, et al. Development of high-performance chemical isotope labeling LC-MS for profiling the carbonyl submetabolome[J]. Anal Chem, 2017, 89: 6758-6765. [49] Bian X, Li N, Tan B, et al. Polarity-tuning derivatiza-tion-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer[J]. Anal Chem, 2018, 90: 11210-11215. [50] Ruiqi J, Yu J, Pei Z, et al. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2017, 89: 12223-12230. [51] Lu Y, Wang Y, Ong CN, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS[J]. Diabetologia, 2016, 59: 2349-2359. [52] Lima AR, Pinto J, Barros-Silva D, et al. New findings on urinary prostate cancer metabolome through combined GC-MS and 1H NMR analytical platforms[J]. Metabolomics, 2020, 16:70. doi: 10.1007/s11306-020-01691-1 [53] Chen Y, Shen G, Zhang R, et al. Combination of injection volume calibration by creatinine and MS signals′ normalization to overcome urine variability in LC-MS-based metabolomics studies[J]. Anal Chem, 2013, 85: 7659-7665. [54] Tang KW, Toh QC, Teo BW. Normalisation of urinary biomarkers to creatinine for clinical practice and research-when and why[J]. Singapore Med J, 2015, 56: 7-10. [55] Huestis MA, Blount BC, Milan DF, et al. Correlation of creatinine- and specific gravity-normalized free and glucuronidated urine cannabinoid concentrations following smoked, vaporized, and oral cannabis in frequent and occasional cannabis users[J]. Drug Test Anal, 2019, 11: 968-975. [56] Edmands WM, Ferrari P, Scalbert A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolo-mic profiles of human urine[J]. Anal Chem, 2014, 86: 10925-10931. [57] WU Y, LI L. Sample normalization methods in quantitative metabolomics[J]. J Chromatogr A, 2016, 1430:80-95. [58] Chadha V, Garg U, Alon US. Measurement of urinary concentration: a critical appraisal of methodologies[J]. Pediatr Nephrol, 2001, 16: 374-382. [59] Mizuno H, Ueda K, Kobayashi Y, et al. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics[J]. Biomed Chromatogr, 2016, 31:10. doi:10.1002/bmc.3864. [60] Mattarucchi E, Baraldi E, Guillou C. Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites[J]. Biomed Chromatogr, 2011, 26: 89-94. [61] Sahni S, Pandya AR, Hadden WJ, et al. A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma[J]. Int J Cancer, 2021, 148: 1508-1518. [62] Liang JH, Lin Y, Ouyang T, et al. Nuclear magnetic resonance-based metabolomics and metabolic pathway net-works from patient-matched esophageal carcinoma, adjacent noncancerous tissues and urine[J].World J Gastroenterol, 2019, 25: 3218-3230. [63] Wang R, Kang H, Zhang X, et al. Urinary metabolomics for discovering metabolic biomarkers of bladder cancer by UPLC-MS[J]. BMC cancer, 2022, 22: 214. doi: 10.1186/s12885-022-09318-5.. [64] Zhu C, Huang F, Li Y, et al. Distinct urinary metabolic biomarkers of human colorectal cancer[J]. Dis Markers, 2022, 2022:1758113. doi:10.1155/2022/1758113. [65] Nizioł J, Ossoliński K, Płaza-Altamer A, et al. Untarge-ted urinary metabolomics for bladder cancer biomarker screening with ultrahigh-resolution mass spectrometry[J]. Sci Rep, 2023, 13: 9802. doi:10.1038/s41598-023-36874-y. [66] Xu X, Zeng C, Qing B, et al. Development of a urine-based metabolomics approach for multi-cancer screening and tumor origin prediction[J]. Front Immunol, 2024, 15:1449103. doi: 10.3389/fimmu.2024.1449103. [67] Eroglu EC, Kucukgoz Gulec U, Vardar MA, et al. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor[J]. Eur J Mass Spectrom (Chichester), 2022, 28: 12-24. [68] Alsaleh M, Leftley Z, O′Connor T, et al. Mapping of population disparities in the cholangiocarcinoma urinary metabolome[J]. Sci Rep, 2021, 11: 21286. doi: 10.1038/s41598-021-00530-0. [69] Tyagi H, Daulton E, Bannaga AS, et al. Non-invasive detection and staging of colorectal cancer using a portable electronic nose[J]. Sensors (Basel), 2021, 21:5440. doi: 10.3390/s21165440. [70] Jacyna J, Wawrzyniak R, Balayssac S, et al. Urinary metabolomic signature of muscle-invasive bladder cancer: A multiplatform approach[J]. Talanta, 2019, 202:572-579. |
| [1] | LIU Dong, LI Qingyan, WANG Ziquan, WANG Bingwu, WANG Baoqing. Detection of miR-34a methylation in peripheral blood of gastric cancer patients and its clinical significance [J]. Basic & Clinical Medicine, 2023, 43(10): 1572-1576. |
| [2] | DU Ming-yue, LI Xue-guang, ZUO Shan-ru, CHEN Zi-qi, ZHOU Jun-hua, LI Hao, HE Quan-yuan. Progress of artificial intelligence application in cancer diagnosis and treatment [J]. Basic & Clinical Medicine, 2022, 42(8): 1297-1301. |
| [3] | GAO Yin-jie, XIE Shao-wei, LIU Shi-ying, LU Yi, ZHANG Fang, QIU Ling, TONG An-li. Application of the steroid profiling detecting by LC-MS/MS in the diagnosis of primary aldosteronism [J]. Basic & Clinical Medicine, 2022, 42(12): 1835-1840. |
| [4] | LYU Ya-nan, SONG Dong-po, WANG Wei-qing, CHEN Yan-ping. ASS1 gene mutation in a neonate with citrullinemia type Ⅰ [J]. Basic & Clinical Medicine, 2020, 40(10): 1403-1406. |
| [5] | . Metabolomic research on hyperuricemia in rats using UPLC-MS/MS [J]. Basic & Clinical Medicine, 2019, 39(3): 337-342. |
| [6] | Xiao-li WEI; Yue WANG. Oncoproteomics and its application [J]. Basic & Clinical Medicine, 2008, 28(10): 1107-1110. |
| [7] | Hu Hao Xin Xiao Zineng Wang. Analysis of Urinary Markers for Ornithine Transcarbamylase Deficiency by Gas Chromatography-Mass Spectrometry [J]. Basic & Clinical Medicine, 2007, 27(7): 811-814. |
| [8] | . Preliminary studies on blood sample processing and mass spectrometry standards [J]. Basic & Clinical Medicine, 2007, 27(2): 193-197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||