[1] Virreira Winter S, Karayel O, Strauss MT, et al. Urinary proteome profiling for stratifying patients with familial Parkinson's disease[J]. EMBO Mol Med, 2021, 13: e13257. doi: 10.15252/emmm.202013257 [2] Rudnick PA, Clauser KR, Kilpatrick LE, et al. Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses[J]. Mol Cell Proteomics, 2010, 9: 225-241. [3] Ma ZQ, Polzin KO, Dasari S, et al. QuaMeter: multivendor performance metrics for LC-MS/MS proteomics instrumentation[J]. Anal Chem, 2012, 84: 5845-5850. [4] Morgenstern D, Barzilay R, Levin Y. RawBeans: a simple, vendor-independent, raw-data quality-control tool[J]. J Proteome Res, 2021, 20: 2098-2104. [5] Huffman RG, Chen A, Specht H, et al. DO-MS: data-driven optimization of mass spectrometry methods[J]. J Proteome Res, 2019, 18: 2493-2500. [6] Tang M, Huang P, Wu L, et al. Comprehensive evaluation and optimization of the data-dependent LC-MS/MS workflow for deep proteome profiling[J]. Anal Chem, 2023, 95: 7897-7905. [7] Liu X, Sun H, Hou X, et al. Standard operating procedure combined with comprehensive quality control system for multiple LC-MS platforms urinary proteomics[J]. Nat Commun, 2025, 16: 1051. doi: 10.1038/s41467-025-56337-4. [8] Kessner D, Chambers M, Burke R, et al. ProteoWizard: open source software for rapid proteomics tools develop-ment[J]. Bioinformatics, 2008, 24: 2534-2536. [9] Ma ZQ, Dasari S, Chambers MC, et al. IDPicker 2.0:improved protein assembly with high discrimination peptide identification filtering[J]. J Proteome Res, 2009, 8: 3872-3881. [10] Wallmann G, Leduc A, Slavov N. Data-driven optimiza-tion of DIA mass spectrometry by DO-MS[J]. J Proteome Res, 2023, 22: 3149-3158. [11] Bielow C, Mastrobuoni G, Kempa S. Proteomics quality control: quality control software for MaxQuant results[J]. J Proteome Res, 2016, 15: 777-787. [12] Chiva C, Olivella R, Borràs E, et al. QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories[J]. PLoS One, 2018, 13: e0189209. [13] Olivella R, Chiva C, Serret M, et al. QCloud2: an improved Cloud-based quality-control system for mass-spectrometry-based proteomics laboratories[J]. J Proteome Res, 2021, 20: 2010-2013. [14] Stanfill BA, Nakayasu ES, Bramer LM, et al. Quality control analysis in real-time (QC-ART): A tool for real-time quality control assessment of mass spectrometry-based proteomics data[J]. Mol Cell Proteomics, 2018, 17: 1824-1836. [15] Dogu E, Taheri SM, Olivella R, et al. MSstatsQC 2.0: R/Bioconductor package for statistical quality control of mass spectrometry based proteomics experiments[J]. J Proteome Res, 2019, 18: 678-686. [16] Gao H, Zhu Y, Wang D, et al. iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control[J]. Nat Commun, 2025, 1: 892. doi: 10.1038/s41467-024-54871-1. [17] Escher C, Reiter L, MacLean B, et al. Using iRT, a normalized retention time for more targeted measurement of peptides[J]. Proteomics, 2012, 12: 1111-1121. [18] Geyer PE, Voytik E, Treit PV, et al. Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies[J]. EMBO Mol Med, 2019, 11: e10427. doi: 10.15252/emmm.201910427. [19] Guo Z, Wang Z, Lu C, et al. Analysis of the differential urinary protein profile in IgA nephropathy patients of Uygur ethnicity[J]. BMC Nephrol, 2018, 19: 358.doi: 10.1186/s12882-018-1139-3. |