[1]Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2022, 387:1099-1110. [2] Provenzano F, Nyberg S, Giunti D, et al. Micro-RNAs shuttled by extracellular vesicles secreted from mesenchymal stem cells dampen astrocyte pathological activation and support neuroprotection in in-vitro models of ALS[J]. Cells, 2022, 11:3923. doi: 10.3390/cells11233923. [3] Smith RA, Miller TM, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease[J]. J Clin Invest, 2006, 116:2290-2296. [4]Tran H, Moazami MP, Yang H, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide[J]. Nat Med, 2022, 28:117-124. [5] Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, et al Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28:104-116. [6] Scoles DR, Meera P, Schneider MD, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2[J]. Nature, 2017,544:362-366. [7] Paul S, Dansithong W, Figueroa KP, et al. Staufen1 in human neurodegeneration[J]. Ann Neurol, 2021, 89:1114-1128. [8] Kumagai S, Nakajima T, Shimazaki K, et al. Early distribution of18 F-labeled AAV9 vectors in the cerebrospinal fluid after intracerebroventricular or intracisternal magna infusion in non-human primates[J]. J Gene Med, 2023, 25:e3457. doi: 10.1002/jgm.3457. [9]Borel F, Gernoux G, Sun H, et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques[J]. Sci Transl Med,2018,10:eaau6414. doi: 10.1126/scitranslmed.aau6414. [10]Mueller C, Berry JD, McKenna-Yasek DM, et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS[J]. N Engl J Med, 2020, 383:151-158. [11] Hordeaux J, Buza EL, Jeffrey B, et al. MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates[J]. Sci Transl Med, 2020, 12:eaba9188. doi: 10.1126/scitranslmed.aba9188. [12] Bravo-Hernandez M, Tadokoro T, Navarro MR, et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS[J]. Nat Med, 2020, 26:118-130. [13] Rochat C, Bernard-Marissal N, Kállstig E, et al. Astrocyte-targeting RNA interference against mutated superoxide dismutase 1 induces motoneuron plasticity and protects fast-fatigable motor units in a mouse model of amyotrophic lateral sclerosis[J]. Glia, 2022,70:842-857. [14] Chen YA, Kankel MW, Hana S, et al. In vivo genome editing using novel AAV-PHP variants rescues motor function deficits and extends survival in a SOD1-ALS mouse model[J]. Gene Ther, 2022, 1:1-12. [15] Lim CKW, Gapinske M, Brooks AK, et al. Treatment of a mouse model of ALS by in vivo base editing[J]. Mol Ther, 2020, 28:1177-1189. [16] Duan W, Guo M, Yi L, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model[J]. Gene Ther, 2020, 27:157-169. [17]Meijboom KE, Abdallah A, Fordham NP, et al. CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitrol[J]. Nat Commun, 2022, 13:6286. doi: 10.1038/s41467-022-33332-7. [18] Xia Y, Chen Z, Xu G, et al. Novel SOD1 monoclonal antibodies against the electrostatic loop preferentially detect misfolded SOD1 aggregates[J]. Neurosci Lett, 2021, 742:135553. doi: 10.1016/j.neulet.2020.135553. [19] Licata NV, Cristofani R, Salomonsson S, et al. C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation[J]. EMBO J, 2022, 41:e105026. doi: 10.15252/embj.2020105026. [20] Kim G, Nakayama L, Blum JA, et al. Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2[J]. Cell Rep, 2022, 41:111508. doi: 10.1016/j.celrep.2022.111508. [21] Baloh RH, Johnson JP, Avalos P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial[J]. Nat Med, 2022, 28:1813-1822. [22]Guttenplan KA, Weigel MK, Adler DI, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model[J]. Nat Commun, 2020, 11:3753. doi: 10.1038/s41467-020-17514-9. [23]Wang S, Ichinomiya T, Savchenko P, et al. Subpial delivery of adeno-associated virus 9-synapsin-caveolin-1 (AAV9-SynCav1) preserves motor neuron and neuromuscular junction morphology, motor function, delays disease onset, and extends survival in hSOD1G93A mice[J]. Theranostics, 2022, 12:5389-5403. [24] Oya R, Tsukamoto O, Hitsumoto T, et al. Gene transfer of skeletal muscle-type myosin light chain kinase via adeno-associated virus 6 Improves muscle functions in an amyotrophic lateral sclerosis mouse model[J]. Int J Mol Sci, 2022, 23:1747. doi: 10.3390/ijms23031747. |