[1] |
Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol, 2021, 17: 400-20.
|
[2] |
Hinder LM, Murdock BJ, Park M, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story[J]. Exp Neurol, 2018, 305: 33-43.
|
[3] |
Hall BE, Macdonald E, Cassidy M, et al. Transcriptomic analysis of human sensory neurons in painful diabetic neuropathy reveals inflammation and neuronal loss[J]. Sci Rep, 2022, 12: 4729. doi: 10.1038/s41598-022-08100-8.
|
[4] |
Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55: 31-55.
|
[5] |
胡贤良, 万燕, 冯霁. 肠道菌群在妊娠期糖尿病发病中作用的研究进展[J]. 基础医学与临床, 2022, 42: 516-519.
|
[6] |
Tran HQ, Bretin A, Adeshirlarijaney A, et al. “Western diet”-induced adipose inflammation requires a complex gut microbiota[J]. Cell Mol Gastroenterol Hepatol, 2020, 9: 313-333.
|
[7] |
Zhu D, Fan T, Huo X, et al. Progressive increase of inflammatory CXCR4 and TNF-alpha in the dorsal root ganglia and spinal cord maintains peripheral and central sensitization to diabetic neuropathic pain in rats[J]. Mediators Inflamm, 2019, 2019: 4856156.doi:10.1155/2019/4856156.
|
[8] |
Zhu D, Fan T, Chen Y, et al. CXCR4/CX43 regulate diabetic neuropathic pain via intercellular interactions between activated neurons and dysfunctional astrocytes during late phase of diabetes in rats and the effects of antioxidant N-acetyl-L-cysteine[J]. Oxid Med Cell Longev, 2022, 2022:8547563.doi:10.1155/2022/8547563.
|
[9] |
Paeschke S, Baum P, Toyka KV, et al. The role of iron and nerve inflammation in diabetes mellitus type 2-induced peripheral neuropathy[J]. Neuroscience, 2019, 406: 496-509.
|