[1] |
Komori H, Yamada K, Tamai I. Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells[J]. Biochim Biophys Acta Biomembr, 2018,1860:973-980.
|
[2] |
Hong Q, Qi K, Feng Z, et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload[J]. Cell Calcium, 2012,51:402-10.
|
[3] |
Verzola D, Ratto E, Villaggio B, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4[J]. PLoS One, 2014,9:e115210.doi: 10.1371/journal.pone.0115210.
|
[4] |
Kang DH. Hyperuricemia and progression of chronic kidney disease: role of phenotype transition of renal tubular and endothelial cells[J]. Contrib Nephrol, 2018,192:48-55.
|
[5] |
Alberts BM, Bruce C, Basnayake K, et al. Secretion of IL-1β from monocytes in gout is redox independent[J]. Front Immunol, 2019,10:70. doi: 10.3389/fimmu.2019.00070.
|
[6] |
Wang M, Zhao J, Zhang N, et al. Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice[J]. Biomed Pharmacother, 2016,83:975-988.
|
[7] |
Yang Q, Fu C, Xiao J, et al. Uric acid upregulates the adiponectin-adiponectin receptor 1 pathway in renal proximal tubule epithelial cells[J]. Mol Med Rep, 2018,17:3545-3554.
|
[8] |
Yang Q, Fu C, Zhang X, et al. Adiponectin protects against uric acid-induced renal tubular epithelial inflammatory responses via the AdipoR1/AMPK signaling pathway[J]. Int J Mol Med, 2019,43:1542-1552.
|
[9] |
Wang MX, Liu YL, Yang Y, et al. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Eur J Pharmacol, 2015,747:59-70.
|
[10] |
Yang Y, Zhang DM, Liu JH, et al. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice[J]. J Ethnopharmacol, 2015,169:49-59.
|
[11] |
Ma CH, Kang LL, Ren HM, et al. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats[J]. J Ethnopharmacol, 2015,172:108-117.
|
[12] |
Wang R, Ma CH, Zhou F, et al. Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Chin J Nat Med, 2016,14:499-507.
|
[13] |
Hongyan L, Suling W, Weina Z, et al. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats[J]. Biomed Pharmacother, 2016,84:1930-1936.
|
[14] |
Chen L, Lan Z. Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-κB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway[J]. Food Funct, 2017,8:1785-1792.
|
[15] |
Wu H, Zhou M, Lu G, et al. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats[J]. Biomed Pharmacother, 2017,96:727-735.
|
[16] |
Hu J, Wu H, Wang D, et al. Weicao capsule ameliorates renal injury through increasing autophagy and NLRP3 degradation in UAN rats[J]. Int J Biochem Cell Biol, 2018,96:1-8.
|
[17] |
Li G, Guan C, Xu L, et al. Scutellarin ameliorates renal injury via increasing CCN1 expression and suppressing NLRP3 inflammasome activation in hyperuricemic mice[J]. Front Pharmacol, 2020,11:584942.doi: 10.3389/fphar.2020.584942.
|
[18] |
Wang YJ, Chen YY, Hsiao CM, et al. Induction of autophagy by pterostilbene contributes to the prevention of renal fibrosis via attenuating NLRP3 inflammasome activation and epithelial-mesenchymal transition[J]. Front Cell Dev Biol, 2020,8:436.doi: 10.3389/fcell.2020.00436.
|
[19] |
Chen Y, Li C, Duan S, et al. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Biomed Pharmacother, 2019,118:109195. doi: 10.1016/j.biopha.2019.109195.
|
[20] |
Tan J, Wan L, Chen X, et al. Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway[J]. Mol Nutr Food Res, 2019,63:e1801402. doi: 10.1002/mnfr.201801402.
|
[21] |
Chang YH, Chiang YF, Chen HY, et al. Anti-iinflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway[J]. Antioxidants (Basel), 2021,10.doi: 10.3390/antiox10040564.
|
[22] |
Xu L, Lin G, Yu Q, et al. Anti-hyperuricemic and nephroprotective effects of dihydroberberine in potassium oxonate- and hypoxanthine-induced hyperuricemic mice[J]. Front Pharmacol, 2021,12:645879.doi: 10.3389/fphar.2021.645879.
|
[23] |
Zhou X, Zhang B, Zhao X, et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis[J]. Food Funct, 2021,12:5637-5649.
|
[24] |
Zhang X, Nie Q, Zhang Z, et al. Resveratrol affects the expression of uric acid transporter by improving inflammation[J]. Mol Med Rep, 2021,2.doi: 10.3892/mmr.2021.12203.
|
[25] |
Sun ZR, Liu HR, Hu D, et al. Ellagic acid exerts beneficial effects on hyperuricemia by inhibiting xanthine oxidase and NLRP3 inflammasome activation[J]. J Agric Food Chem, 2021,9:12741-12752.
|