[1] Andress S, Johnson A, Unberath M, et al. On-the-fly augmented reality for orthopedic surgery using a mul-timodal fiducial[J]. J Med Imaging (Bellingham), 2018, 5:021209. doi: 10.1117/1.JMI.5.2.021209. [2] Brigham TJ. Reality check: Basics of augmented, virtual, and mixed reality[J]. Med Ref Serv Q, 2017, 36: 171-178. [3] Viehofer AF, Wirth SH, Zimmermann SM, et al. Augmented reality guided osteotomy in hallux valgus correction[J]. BMC Musculoskelet Disord, 2020, 21:438. doi: 10.1186/s12891-020-03373-4. [4] Madhavan K, Kolcun JPG, Chieng LO, et al. Augmented-reality integrated robotics in neurosurgery: are we there yet?[J]. Neurosurg Focus, 2017, 42:E3. doi: 10.3171/2017.2.FOCUS177. [5] Creighton FX, Unberath M, Song T, et al. Early feasibility studies of augmented reality navigation for lateral skull base surgery[J]. Otol Neurotol, 2020, 41: 883-888. [6] Elmi-Terander A, Nachabe R, Skulason H, et al. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology[J]. Spine (Phila Pa 1976), 2018, 43: 1018-1023. [7] Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study[J]. Int J Comput Assist Radiol Surg, 2017, 12: 2205-2215. [8] Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion[J]. J Orthop Surg Res, 2020, 15:174. doi: 10.1186/s13018-020-01690-x. [9] Hetherington J, Lessoway V, Gunka V, et al. SLIDE: automatic spine level identification system using a deep convolutional neural network[J]. Int J Comput Assist Radiol Surg, 2017, 12: 1189-1198. [10] Hu MH, Chiang CC, Wang ML, et al. Clinical feasibility of the augmented reality computer-assisted spine surgery system for percutaneous vertebroplasty[J]. Eur Spine J, 2020, 29: 1590-1596. [11] Vadala G, De Salvatore S, Ambrosio L, et al. Robotic spine surgery and augmented reality systems: a state of the art[J]. Neurospine, 2020, 17: 88-100. [12] Kosterhon M, Gutenberg A, Kantelhardt SR, et al. Navigation and image injection for control of bone removal and osteotomy planes in spine surgery[J]. Oper Neurosurg (Hagerstown), 2017,13: 297-304. [13] Braga RT, O CC, O'Connor NE, et al. A quality of experience assessment of haptic and augmented reality feed-back modalities in a gait analysis system[J]. PLoS One, 2020, 15:e0230570. doi: 10.1371/journal.pone.0230570. [14] Chytas D, Malahias MA, Nikolaou VS, et al. Augmented reality in orthopedics: current state and future directions[J]. Front Surg, 2019, 6:38. doi: 10.3389/fsurg.2019.00038. [15] Alexander C, Loeb AE, Fotouhi J, et al. Augmented reality for acetabular component placement in direct anterior total hip arthroplasty[J]. J Arthroplasty, 2020, 35: 1636-1641. [16] Ortega G, Wolff A, Baumgaertner M, et al. Usefulness of a head mounted monitor device for viewing intraoperative fluoroscopy during orthopaedic procedures[J]. Arch Orthop Trauma Surg, 2008, 128: 1123-1126. [17] von der Heide AM, Fallavollita P, Wang L, et al. Camera-augmented mobile C-arm (CamC): a feasibility study of augmented reality imaging in the operating room[J]. Int J Med Robot, 2018, 14: doi: 10.1002/rcs.1885. [18] Ogawa H, Hasegawa S, Tsukada S, et al. A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty[J]. J Arthroplasty, 2018, 33: 1833-1837. [19] Atmani H, Merienne F, Fofi D, et al. Computer aided surgery system for shoulder prosthesis placement[J]. Comput Aided Surg, 2007, 12: 60-70. [20] Cho HS, Park YK, Gupta S, et al. Augmented reality in bone tumour resection: an experimental study[J]. Bone Joint Res, 2017, 6: 137-143. [21] Fritz J, U-Thainual P, Ungi T, et al. Augmented reality visualization with use of image overlay technology for MR imaging-guided interventions: assessment of performance in cadaveric shoulder and hip arthrography at 1.5 T[J]. Radiology, 2012, 265: 254-249. [22] Ogawa H, Kurosaka K, Sato A, et al. Does an augmented reality-based portable navigation system improve the accuracy of acetabular component orientation during THA? A randomized controlled trial[J]. Clin Orthop Relat Res, 2020, 478: 935-943. [23] Rose K, Pedowitz R. Fundamental arthroscopic skill differentiation with virtual reality simulation[J]. Arthroscopy, 2015, 31: 299-305. |