[1] |
Nihei W, Nagafuku M, Hayamizu H, et al. NPC1L1-dependent intestinal cholesterol absorption requires ganglio-side GM3 in membrane microdomains[J]. J Lipid Res, 2018, 59: 2181-2187.
|
[2] |
Zuo H, Su X, Jin Y, et al. Transthyretin regulated by linc00657/miR-205-5p promoted cholesterol metabolism by inducing SREBP2-HMGCR and inhibiting LXR alpha-CYP7A1[J]. Arch Med Res, 2020, 51: 317-326
|
[3] |
McGettigan B, McMahan R, Orlicky D, et al. Dietary lipids differentially shape nonalcoholic steatohepatitis progression and the transcriptome of Kupffer cells and infiltrating macrophages[J]. Hepatology, 2019, 70: 67-83.
|
[4] |
Chen HW, Yen CC, Kuo LL, et al. Benzyl isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells[J]. Toxicol Appl Pharmacol, 2020, 393: 114941. doi: 10.1016/j.taap.2020.114941.
|
[5] |
Bakke SS, Aune MH, Niyonzima N, et al. Cyclodextrin reduces cholesterol crystal-induced inflammation by modulating complement activation[J]. J Immunol, 2017, 199: 2910-2920.
|
[6] |
Ho CM, Ho SL, Jeng YM, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease[J]. J Inflamm, 2019, 16: 7. doi: 10.1186/s12950-019-0211-5.
|
[7] |
庄红, 张苏川, 刘慧地, 等. 沉默CXCL12抑制ox-LDL小鼠巨噬细胞系RAW264.7泡沫化和凋亡[J]. 基础医学与临床, 2021, 41:219-224.
|
[8] |
Ioannou GN, Van Rooyen DM, Savard C, et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH[J]. J Lipid Res, 2015, 56: 277-285.
|
[9] |
Yu Y, Liu Y, An W, et al. STING-mediated inflamma-tion in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129: 546-555.
|
[10] |
Dang EV, McDonald JG, Russell DW, et al. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation[J]. Cell, 2017, 171: 1057-1071.
|
[11] |
Domínguez-Pér milton C, Mortensen R, et al. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation[J]. J Cell Biol, 2018, 217: 3560-3576.
|
[13] |
Guo C, Chi,Z, Jiang D, et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J]. Immunity, 2018, 49: 842-856.
|
[14] |
Di Rocco M, Pisciotta L, Madeo A, et al. Long term substrate reduction therapy with ezetimibe alone or associated with statins in three adult patients with lysosomal acid lipase deficiency[J]. Orphanet J Rare Dis, 2018, 13: 24. doi: 10.1186/s13023-018-0768-8.
|
[15] |
Fiorucci S, Biagioli M, Sepe V, et al. Bile acid modu-lators for the treatment of nonalcoholic steatohepatitis (NASH)[J]. Expert Opin Investig Drugs, 2020, 29: 623-632.
|
[16] |
Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic acid: an update of its pharmacological activities in liver dis-orders[J]. Handb Exp Pharmacol, 2019, 256: 283-295.
|
[17] |
Briand F, Brousseau E, Quinsat M, et al. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the diet-induced NASH (DIN) hamster model[J]. Eur J Pharmacol, 2018, 818: 449-456.
|
[18] |
Carino A, Marchianò S, Biagioli M, et al. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis[J]. Faseb J, 2019, 33: 2809-2822.
|
[19] |
Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70: 761-774.
|
[20] |
Beaumont M, Neyrinck AM, Olivares M, et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. Faseb j, 2018, 32: fj201800544. doi: 10.1096/fj.201800544.
|
[21] |
Canyelles M, Tondo M, Cedó L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19: 3228. doi: 10.3390/ijms19103228.
|