[1]Pawelec KM, Hix JML, Shapiro EM. Diabetic neuro-pathy: A position statement by the American Diabetes Association[J]. Diabetes Care, 2017, 40: 136-154.doi:10.2337/dc16-2042. [2]Li R, Wang B, Wu C, et al. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage[J]. Cell Death Dis, 2021, 12: 107. doi.10.1038/s41419-021-03407-2. [3]Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection[J]. Mol Metab, 2025, 98:102187.doi:10.1016/j.molmet.2025.102187. [4]Pawelec KM, Hix JML, Shapiro EM. Material matters: Degradation products affect regenerating Schwann cells[J]. Biomater Adv, 2024, 159:213825. doi:10.1016/j.bioadv.2024.213825. [5]Li W, Yang T, Wang N, et al. Maladaptive peripheral ketogenesis in Schwann cells mediated by CB(1)R contributes to diabetic neuropathy[J]. Adv Sci (Weinh), 2025, 12: e2414547. doi:10.1002/advs.202414547. [6]Chen CL, Ma J, Lu RY, et al. Perturbated glucose metabolism augments epithelial cell proinflammatory function in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2023, 151: 991-1004.e20. doi:10.1016/j.jaci.2022.09.036. [7]Zhang X, Zhao S, Yuan Q, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression[J]. Cell Death Dis, 2021, 12: 642. doi:10.1038/s41419-021-03930-2. [8]Qin Q, Wang D, Qu Y, et al. Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson's disease via histone lactylation[J]. NPJ Parkinsons Dis, 2025, 11: 3. doi:10.1038/s41531-024-00858-0. [9]Jia L, Liao M, Mou A, et al. Rheb-regulated mitochon-drial pyruvate metabolism of Schwann cells linked to axon stability[J]. Dev Cell, 2021, 56:2980-2994.e6. doi:10.1016/j.devcel.2021.09.013. [10]Li W, Liu G, Liang J, et al. The dance between Schwann cells and macrophages during the repair of peripheral nerve injury[J]. Neurosci Bull, 2025, 41: 1448-1462.doi:10.1007/s12264-025-01427-y. [11]Xu J, Wen J, Fu L, et al. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice[J]. J Neuroinflammation, 2021, 18: 234. doi:10.1186/s12974-021-02292-y. [12]Zhao B, Zhang Q, He Y, et al. Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong[J]. J Pharm Anal, 2024, 14: 225-243. doi:10.1016/j.jpha.2023.09.007. [13]Bao C, Ma Q, Ying X, et al. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications[J]. EBioMedicine, 2025, 111:105502.doi:10.1016/j.ebiom.2024.105502. [14]Wei G, Li X, Huang M, et al. Light-responsive oxygen generation from chlorella hydrogels for facial nerve injury recovery: Crosstalk between M1/M2 macrophages and Schwann cells[J]. Adv Healthc Mater, 2025, 14: e2501123. doi:10.1002/adhm.202501123. |