基础医学与临床 ›› 2026, Vol. 46 ›› Issue (2): 298-302.doi: 10.16352/j.issn.1001-6325.2026.02.0298

• 医学教育 • 上一篇    下一篇

人工智能赋能医学教育的有效培训路径探索与实践

李红凌1, 张芸竹1, 霍千荷1, 郭磊2, 彭宜红3, 王婧4*, 郭恒怡4*   

  1. 中国医学科学院北京协和医学院 基础医学研究所 1.教育处; 2.药理学系; 4 病理生理学系,北京100005; 3.北京大学 基础医学院 病原学系,北京 100191
  • 收稿日期:2025-09-09 修回日期:2025-09-23 出版日期:2026-02-05 发布日期:2026-01-21
  • 通讯作者: * wangjing@ibms.pumc.edu.cn; guohy.pumc@163.com
  • 基金资助:
    北京协和医学院青年医学教育学者培训项目(2024mesp004)

Exploration and practice of effective training pathways for empowering medical education with artificial intelligence

LI Hongling1, ZHANG Yunzhu1, HUO Qianhe1, GUO Lei2, PENG Yihong3, WANG Jing4*, GUO Hengyi4*   

  1. 1. Department of Education; 2. Department of Pharmacology; 4. Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100005; 3. School of Basic Medical Sciences, Peking University Health Science Center PKUHSC, Beijing 100191, China
  • Received:2025-09-09 Revised:2025-09-23 Online:2026-02-05 Published:2026-01-21
  • Contact: * wangjing@ibms.pumc.edu.cn; guohy.pumc@163.com

摘要: 目的 探索改善教师对人工智能(AI)的认知、快速提升应用AI赋能医学教育教学能力的有效培训路径。方法 通过问卷调查确定北京协和医学院基础学院教师当前对AI赋能医学教育的理解、接纳程度,以及AI赋能医学教育技能的掌握情况和培训诉求,根据问卷分析结果构建包括“认知引导-技能传授-倒逼输出-实践检验”的循环提升式培训模式;通过包含基本信息、培训参与情况、效果及满意度评价、成果量化评估的回访问卷调查,对效果进行综合评价。结果 教师对AI了解不足的比例从66.66%降至29.27%;85%的教师认为培训针对性和有效性比较高或非常高,90%以上的教师评价培训的理论阐释清晰、实践启发性强,对培训总体比较满意和非常满意的教师占90.24%,80.49%的教师认同AI应用能力得到明显提升,97.56%的教师期待后续培训。结论 本研究构建的循环提升式培训模式在短期内改善了教师对AI融入医学教育的认知,有效提升了教师的数智素养,提高了教师将AI技术融入医学教育教学的能力。

关键词: 人工智能, 医学教育, 培训, 倒逼输出法, 做中学

Abstract: Objective To explore effective training pathways improving teachers′ cognition of artificial intelligence(AI) and rapidly enhance their ability to apply AI in medical education. Methods A baseline questionnaire was conducted among teachers at the School of Basic Medical Sciences of Peking Union Medical College to assess their current understanding of AI-enabled medical education, acceptance, skill level and training needs. Based on the analysis, a cyclic enhancement training model (“Cognition Guidance-Skill Instruction- Output Motivation- Practice Validation”) was developed. A follow-up questionnaire was used to comprehensively assess the training outcomes. It encompassed basic information, training participation, effectiveness and satisfaction evaluation,and outcome assessment. Results The proportion of teachers with insufficient AI understanding dropped from 66.66% to 29.27%. Eighty-five percent rated the training as highly or very targeted and effective; over 90% reported clear theoretical explanations and strong practical inspiration. Overall satisfaction (satisfied/very satisfied) was 90.24%, 80.49% confirmed a significant improvement in AI application competencies, and 97.56% expressed expectation for future training. Conclusions The cyclic enhancement training model effectively improves teachers′ cognition of AI integration into medical education and rapidly enhances their proficiency in applying AI tools to teaching practices.

Key words: artificial intelligence, medical education, training, forced output method, learn by doing

中图分类号: