基础医学与临床 ›› 2025, Vol. 45 ›› Issue (8): 982-991.doi: 10.16352/j.issn.1001-6325.2025.08.0982
魏静1, 孙伟2*
收稿日期:2025-03-24
修回日期:2025-06-12
出版日期:2025-08-05
发布日期:2025-07-11
通讯作者:
*sunwei@ibms.pumc.edu.cn
基金资助:WEI Jing1, SUN Wei2*
Received:2025-03-24
Revised:2025-06-12
Online:2025-08-05
Published:2025-07-11
Contact:
*sunwei@ibms.pumc.edu.cn
摘要: 尿液成分简单、获取无创、不受稳态机制的调控,相比于血液更易于发现疾病早期变化,是发现疾病标志物的良好体液来源。近年来,随着质谱技术和检测通量提升,临床尿液蛋白质组领域研究取得显著进展。尿液蛋白不仅可以反映疾病在组织水平功能变化,还可为个体化用药疗效监测提供新路径。本文系统总结了近十年(2015—2024)尿液蛋白质组在非泌尿系统疾病诊断中的研究进展。本文还对尿液蛋白质组在病情监测、预后评估、药物疗效以及中医药领域的应用进行探讨,并展望未来发展前景。
中图分类号:
魏静, 孙伟. 基于质谱的尿液蛋白质组的临床应用[J]. 基础医学与临床, 2025, 45(8): 982-991.
WEI Jing, SUN Wei. Clinical applications of urine proteome based on mass spectrometry[J]. Basic & Clinical Medicine, 2025, 45(8): 982-991.
| [1] | Sun H, Wand D, Liu D, et al. Differential urinary proteins to diagnose coronary heart disease based on iTRAQ quantitative proteomics[J]. Anal Bioanal Chem, 2019, 411: 2273-2282. |
| [2] | Zou L, Wang X, Guo Z, et al. Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification[J]. Mol Med Rep, 2019, 19: 3972-3988. |
| [3] | Ding W, Qiu B, Cram DS, et al. Isobaric tag for relative and absolute quantitation based quantitative proteomics reveals unique urinary protein profiles in patients with preeclampsia[J]. J Cell Mol Med, 2019, 23: 5822-5826. |
| [4] | Chen R, Yi Y, Xiao W, et al. Label-free liquid chromatography-mass spectrometry proteomic analysis of urinary identification in diabetic vascular dementia in a Han Chinese population[J]. Front Aging Neurosci, 2021, 13: 619945. doi: 10.3389/fnagi.2021.619945. |
| [5] | Starodubeseva NL, Konomokhin AS, Bugrova AE, et al. Investigation of urine proteome of preterm newborns with respiratory pathologies[J]. J Proteomics, 2016, 149:31-37. |
| [6] | Ahmed S, Odumade OA, Van ZP, et al. Urine proteo-mics for noninvasive monitoring of biomarkers in bronchopulmonary dysplasia[J]. Neonatology, 2022, 119: 193-203. |
| [7] | Wu Y, Li M, Zhang K, et al. Quantitative proteomics analysis of serum and urine with DIA mass spectrometry reveals biomarkers for pediatric obstructive sleep apnea[J]. Arch Bronconeumol, 2025,61:67-75. |
| [8] | Liu L, Deng J, Yang Q, et al. Urinary proteomic analysis to identify a potential protein biomarker panel for the diagnosis of tuberculosis[J]. IUBMB Life, 2021, 73: 1073-1083. |
| [9] | Yu J, Yuan J, Liu Z, et al. Combined urine proteomics and metabolomics analysis for the diagnosis of pulmonary tuberculosis[J]. Clin Proteomics, 2024, 21: 66. doi: 10.1186/s12014-024-09514-4. |
| [10] | Zhang C, Leng W, Sun C, et al. Urine proteome profiling predicts lung cancer from control cases and other tumors[J]. EBioMedicine, 2018, 30: 120-128. |
| [11] | Duangkumpha K, Stoll T, Phetcharaburanin J, et al. Urine proteomics study reveals potential biomarkers for the differential diagnosis of cholangiocarcinoma and periductal fibrosis[J]. PLoS One, 2019, 14: e0221024. doi: 10.1371/journal.pone.0221024 |
| [12] | Sun Y, Guo Z, Liu X, et al. Noninvasive urinary protein signatures associated with colorectal cancer diagnosis and metastasis[J]. Nat Commun, 2022, 13: 2757. doi: 10.1038/s41467-022-30391-8. |
| [13] | Shimura T, Dayde D, Wang H, et al. Novel urinary protein biomarker panel for early diagnosis of gastric cancer[J]. Br J Cancer, 2020, 123: 1656-1664. |
| [14] | Fan H, Li X, Li ZW, et al. Urine proteomic signatures predicting the progression from premalignancy to malignant gastric cancer[J]. EBioMedicine, 2022, 86:104340. doi: 10.1016/j.ebiom.2022.104340. |
| [15] | Zhao Y, Yang L, Sun C, et al. Discovery of urinary proteomic signature for differential diagnosis of acute appendicitis[J]. Biomed Res Int, 2020, 2020:3896263. doi: 10.1155/2020/3896263. |
| [16] | Akshintala VS, Moore MG, Cruz-Monserrate Z, et al. Urine proteomics profiling identifies novel acute pancrea-titis diagnostic biomarkers in a pediatric population[J]. Gastroenterology, 2024, 167: 1019-1021.e1012. doi: 10.1053/j.gastro.2024.05.015. |
| [17] | Flick KF, Yip-Schneider MT, Sublette CM, et al. A quantitative global proteomics approach identifies candi-date urinary biomarkers that correlate with intraductal papillary mucinous neoplasm dysplasia[J]. Pancreas, 2020, 49: 1044-1051. |
| [18] | Watanabe Y, Hirao Y, Kasuga K, et al. Molecular network analysis of the urinary proteome of Alzheimer's disease patients[J]. Dement Geriatr Cogn Dis Extra, 2019, 9: 53-65. |
| [19] | Watanabe Y, Hirao Y, Kasuga K, et al. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer's disease[J]. Dement Geriatr Cogn Dis Extra, 2020, 10: 94-104. |
| [20] | Wang Y, Sun Y, Wang Y, et al. Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer's disease: findings based on urine proteomics and machine learning[J]. Alzheimers Res Ther, 2023, 15: 191. doi: 10.1186/s13195-023-01324-4. |
| [21] | Virreira Winter S, Karayel O, Strauss MT, et al. Urinary proteome profiling for stratifying patients with familial Parkinson's disease[J]. EMBO Mol Med, 2021, 13: e13257. doi: 10.15252/emmm.202013257. |
| [22] | Wang Y, Zhang J, Song W, et al. A proteomic analysis of urine biomarkers in autism spectrum disorder[J]. J Proteomics, 2021, 242:104259. doi: 10.1016/j.jprot.2021.104259. |
| [23] | Meng W, Huan Y, Gao Y. Urinary proteome profiling for children with autism using data-independent acquisition proteomics[J]. Transl Pediatr, 2021, 10: 1765-1778. |
| [24] | Wu J, Zhang J, Wei J, et al. Urinary biomarker discovery in gliomas using mass spectrometry-based clinical proteomics[J]. Chin Neurosurg J, 2020, 6:11. doi: 10.1186/s41016-020-00190-5. |
| [25] | Hallal SM, Tüzesi Á, Sida LA, et al. Glioblastoma biomarkers in urinary extracellular vesicles reveal the potential for a ‘liquid gold’ biopsy[J]. Br J Cancer, 2024, 130: 836-851. |
| [26] | Hao X, Guo Z, Sun H, et al. Urinary protein biomarkers for pediatric medulloblastoma[J]. J Proteomics, 2020, 225:103832. doi: 10.1016/j.jprot.2020.103832. |
| [27] | Benabdelkamel H, Masood A, Okla M, et al. A proteomics-based approach reveals differential regulation of urine proteins between metabolically healthy and unhealthy obese patients[J]. Int J Mol Sci, 2019, 20: 4905. doi: 10.3390/ijms20194905. |
| [28] | Liu CH, Zheng S, Wang S, et al. Urine proteome in distinguishing hepatic steatosis in patients with metabolic-associated fatty liver disease[J]. Diagnostics (Basel), 2022, 12: 1412. doi: 10.3390/diagnostics12061412. |
| [29] | Xiao K, Yu L, Zhu L, et al. Urine proteomics profiling and functional characterization of knee osteoarthritis using iTRAQ technology[J]. Horm Metab Res, 2019, 51: 735-740. |
| [30] | Carneiro A, Macedo-da-Silva J, Santiago VF, et al. Urine proteomics as a non-invasive approach to monitor exertional rhabdomyolysis during military training[J]. J Proteomics, 2022, 258:104498. doi: 10.1016/j.jprot.2022.104498. |
| [31] | Xu N, Yu Y, Duan C, et al. Quantitative proteomics identifies and validates urinary biomarkers of rhabdomyosarcoma in children[J]. Clin Proteomics, 2023, 20: 10. doi: 10.1186/s12014-023-09401-4. |
| [32] | Morales M, Alayi TD, Tawalbeh SM, et al. Urine proteomics by mass spectrometry identifies proteins involved in key pathogenic pathways in patients with juvenile dermatomyositis[J]. Rheumatology (Oxford), 2023, 62: 3161-3168. |
| [33] | Kacírová M, Bober P, AlexoviČ M, et al. Differential urinary proteomic analysis of endometrial cancer[J]. Physiol Res, 2019, 68(Suppl 4): S483-S490. doi: 10.33549/physiolres.934375. |
| [34] | Njoku K, Pierce A, Geary B, et al. Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women[J]. Br J Cancer, 2023, 128: 1723-1732. |
| [35] | Višnić A, Barišić D, Čanadi Jurešić G, et al. Identification of urine biomarkers of endometriosis-protein mass spectrometry[J]. Am J Reprod Immunol, 2024, 91: e13856. doi: 10.1111/aji.13856. |
| [36] | Tian W, Zhang N, Jin R, et al. Immune suppression in the early stage of COVID-19 disease[J]. Nat Commun, 2020, 11: 5859. doi: 10.1038/s41467-020-19706-9. |
| [37] | Wilson L, Chang JW, Meier S, et al. Proteomic profiling of urine from hospitalized patients with severe pneumonia due to SARS-CoV-2 vs other causes: a preliminary report[J]. Open Forum Infect Dis, 2023, 10: ofad451. doi: 10.1093/ofid/ofad451. |
| [38] | Li Y, Wang Y, Liu H, et al. Urine proteome of COVID-19 patients[J]. Urine (Amst), 2020, 2:1-8. |
| [39] | Liu Y, Song L, Zheng N, et al. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options[J]. Sci China Life Sci, 2022, 65: 1866-1880. |
| [40] | Bi X, Liu W, Ding X, et al. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19[J]. Cell Rep, 2022, 38: 110271. doi: 10.1016/j.celrep.2021.110271. |
| [41] | Hu HM, Du HW, Cui JW, et al. New biomarkers of Kawasaki disease identified by urine proteomic analysis[J]. FEBS Open Bio, 2019, 9: 265-275. |
| [42] | Liu N, Wang J, Wang X, et al. Analysis of urine differential proteins in patients with allergic rhinitis[J]. Heliyon, 2023, 9: e17323. doi: 10.1016/j.heliyon.2023.e17323. |
| [43] | Qin W, Liang A, Han X, et al. Quantitative urinary proteome analysis reveals potential biomarkers for disease activity of Behçet's disease uveitis[J]. BMC Ophthalmol, 2024, 24: 277. doi: 10.1186/s12886-024-03557-9. |
| [44] | Jeanmard N, Bissanum R, Sriplung H, et al. Proteomic profiling of urinary extracellular vesicles differentiates breast cancer patients from healthy women[J]. PLoS One, 2023, 18: e0291574. doi: 10.1371/journal.pone.0291574. |
| [45] | Fu W, Song Y, Zhao R, et al. Proteomics analysis of serum and urine identifies VCP and CTSA as potential biomarkers associated with multiple myeloma[J]. Clin Chim Acta, 2024, 552: 117701. doi: 10.1016/j.cca.2023.117701. |
| [46] | Ortiz MV, Ahmed S, Burns M, et al. Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms' tumor[J]. JCI Insight, 2019, 4: e127098. doi: 10.1172/jci.insight.127098. |
| [47] | Pang B, Wang Q, Chen H, et al. Proteomic identification of small extracellular vesicle proteins LAMB1 and histone H4 for prostate cancer diagnosis and risk stratification[J]. Adv Sci (Weinh), 2024, 11: e2402509. doi: 10.1002/advs.202402509. |
| [48] | Doykov ID, Heywood WE, Nikolaenko V, et al. Rapid, proteomic urine assay for monitoring progressive organ disease in Fabry disease[J]. J Med Genet, 2020, 57: 38-47. |
| [49] | Song H, Hu Z, Zhang S, et al. Application of urine proteomics in the diagnosis and treatment effectiveness monitoring of early-stage mycosis fungoides[J]. Clin Proteomics, 2024, 21: 53. doi: 10.1186/s12014-024-09503-7 |
| [50] | Huan Y, Wei J, Zhou J, et al. Label-free liquid chromatography-mass spectrometry proteomic analysis of the urinary proteome for measuring the escitalopram treatment response from major depressive disorder[J]. Front Psychiatry, 2021, 12:700149. doi: 10.3389/fpsyt.2021.700149. |
| [51] | Jia L, Wu J, Wei J, et al. Proteomic analysis of urine reveals biomarkers for the diagnosis and phenotyping of abdominal-type Henoch-Schonlein purpura[J]. Transl Pediatr, 2021, 10: 510-524. |
| [52] | Peerapen P, Ausakunpipat N, Sutthimethakorn S, et al. Physiologic changes of urinary proteome by caffeine and excessive water intake[J]. Clin Chem Lab Med, 2017, 55: 993-1002. |
| [53] | Shao C, Zhao M, Chen X, et al. Comprehensive analysis of individual variation in the urinary proteome revealed significant gender differences[J]. Mol Cell Proteomics, 2019, 18: 1110-1122. |
| [54] | Xiao X, Sun H, Liu X, et al. Qualitative and quantitative proteomic and metaproteomic analyses of healthy human urine sediment[J]. Proteomics Clin Appl, 2022, 16: e2100007. doi: 10.1002/prca.202100007. |
| [55] | 中国尿计划共同倡议人, 高友鹤, 孙伟, 等. 中国尿计划倡议书[J]. 中国科学:生命科学, 2025, 55: 393-396. |
| [1] | 崔欣月, 韩沙沙. 硫化氢在哮喘中的作用[J]. 基础医学与临床, 2025, 45(9): 1239-1242. |
| [2] | 赵青青, 程晓亮. 糖尿病肾病的生物标志物的研究进展[J]. 基础医学与临床, 2025, 45(4): 546-550. |
| [3] | 楼海均, 孟·孟根, 张振宇, 童卓云, 乌都木丽. 跨膜蛋白33在肿瘤发生发展中的作用[J]. 基础医学与临床, 2025, 45(2): 258-262. |
| [4] | 李海鹏, 刘一帆, 李珊, 陈道辉, 雷京霖, 胡政. miR-423-5p在缺血性卒中患者血浆中的表达升高[J]. 基础医学与临床, 2025, 45(12): 1572-1579. |
| [5] | 李运龙, 李蕊, 张玉萍, 王瑞, 刘燕萍. 孕期锌缺乏及对妊娠结局的影响[J]. 基础医学与临床, 2024, 44(4): 422-427. |
| [6] | 赵永忠, 薛懿, 李立群, 侯孟森, 杨晓军. 胆囊癌的早期影像学及循环标志物特征[J]. 基础医学与临床, 2024, 44(2): 265-269. |
| [7] | 曹罗元, 董文婿, 杨菁, 郭立文, 陆娇娇, 郑娴, 富显果. miR-124-3p在β-地中海贫血中的差异表达及临床意义[J]. 基础医学与临床, 2024, 44(12): 1633-1637. |
| [8] | 杜丰禾, 刘暴. 血管周围脂肪组织炎性反应促进动脉粥样硬化作用机制的研究进展[J]. 基础医学与临床, 2023, 43(4): 685-689. |
| [9] | 郑行健, 冉雪, 任梓月, 戴迟兵. 肠易激综合征生物标志物的研究进展[J]. 基础医学与临床, 2023, 43(3): 500-504. |
| [10] | 姚刘旭, 李玉红, 蒋宗明. 外泌体lncRNA在结直肠癌液体活检中的研究进展[J]. 基础医学与临床, 2023, 43(2): 317-321. |
| [11] | 谢思安, 陈奕阳, 徐俊玄, 宁婷婷, 张楠, 朱圣韬, 张澍田. PTOV1表达水平对结直肠癌患者预后的影响[J]. 基础医学与临床, 2022, 42(8): 1176-1181. |
| [12] | 谢思安, 徐俊玄, 宁婷婷, 张楠, 朱圣韬, 刘思. VAV1是动脉粥样硬化预后的潜在靶点和生物标志物[J]. 基础医学与临床, 2022, 42(7): 1092-1098. |
| [13] | 朱李茹, 黄友明, 章宏祥, 周发友, 唐晓磊. 葡聚糖结合蛋白的原核表达及检测深部真菌感染的应用[J]. 基础医学与临床, 2022, 42(6): 883-889. |
| [14] | 何丹, 阮中宝. 细胞外囊泡在心房颤动发病中的作用[J]. 基础医学与临床, 2022, 42(4): 671-674. |
| [15] | 邹兴龙, 陈柱先, 孙娟娟, 蔡江滢, 苏露, 马薇, 傅思武. 壳聚糖药用制剂及其应用的研究进展[J]. 基础医学与临床, 2022, 42(11): 1791-1794. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部