基础医学与临床 ›› 2025, Vol. 45 ›› Issue (2): 154-159.doi: 10.16352/j.issn.1001-6325.2025.02.0154
刘怡铭, 陈文杰, 史雨晨*, 柳景华*
收稿日期:
2024-11-04
修回日期:
2024-12-02
出版日期:
2025-02-05
发布日期:
2025-01-17
通讯作者:
*shiyuchen0111@163.com;liujinghua@vip.sina.com
基金资助:
LIU Yiming, CHEN Wenjie, SHI Yuchen*, LIU Jinghua*
Received:
2024-11-04
Revised:
2024-12-02
Online:
2025-02-05
Published:
2025-01-17
Contact:
*shiyuchen0111@163.com;liujinghua@vip.sina.com
摘要: 肠道菌群与肥胖、胰岛素抵抗、抑郁症、心血管风险密切相关,益生菌可以改善心血管疾病风险。血管钙化(VC)的过程受到严格调控,涉及矿物质沉积物在血管与瓣膜中的积累,是心血管疾病风险的危险因素。饮食对肠道菌群与血管钙化具有多重影响,可以通过菌群代谢产物影响心血管健康。尽管肠道菌群与血管钙化的关系已经得到证实,但饮食成分对血管钙化的确切影响尚不完全清楚。本文旨在综述不同饮食模式下肠道菌群与血管钙化之间的关系及其作用机制,为未来VC的诊断和治疗提供新的研究方向。
中图分类号:
刘怡铭, 陈文杰, 史雨晨, 柳景华. 饮食、肠道菌群与血管钙化[J]. 基础医学与临床, 2025, 45(2): 154-159.
LIU Yiming, CHEN Wenjie, SHI Yuchen, LIU Jinghua. Diet, gut microbiota and vascular calcification[J]. Basic & Clinical Medicine, 2025, 45(2): 154-159.
[1] | Onnis C, Virmani R, Kawai K, et al. Coronary artery calcification: current concepts and clinical implications[J]. Circulation, 2024, 149: 251-266.doi:10.1161/CIRCULATIONAHA.123.065657. |
[2] | McCullough PA, Chinnaiyan KM, Agrawal V, et al. Amplification of atherosclerotic calcification and Mönckeberg's sclerosis: a spectrum of the same disease process[J]. Adv Chronic Kidney Dis, 2008, 15: 396-412.doi:10.1053/j.ackd.2008.07.009. |
[3] | Zeng SY, Liu YF, Zeng ZL, et al. Antibiotic-induced gut microbiota disruption promotes vascular calcification by reducing short-chain fatty acid acetate[J]. Mol Med, 2024, 30: 130. doi: 10.1186/s10020-024-00900-0. |
[4] | Cui X, Wei W, Hu Y, et al. Dietary inflammation and vascular calcification: a comprehensive review of the associations, underlying mechanisms, and prevention strategies[J]. Crit Rev Food Sci Nutr, 2024. doi: 10.1080/10408398.2024.2408447. |
[5] | Song X, Song Y, Ma Q, et al. M1-type macrophages secrete TNF-α to stimulate vascular calcification by upregulating CA1 and CA2 expression in VSMCs[J]. J Inflamm Res, 2023, 16: 3019-3032. |
[6] | Shobeiri N, Bendeck MP. Interleukin-1β is a key biomarker and mediator of inflammatory vascular calcification[J]. Arterioscler Thromb Vasc Biol, 2017, 37: 179-180. |
[7] | Zhu Y, Ma WQ, Han XQ, et al. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism[J]. Sci Rep, 2018, 8: 13730. doi: 10.1038/s41598-018-31877-6. |
[8] | Luc K, Schramm-Luc A, Guzik T, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70: 809-824. |
[9] | Watanabe Y, Fujisaka S, Ikeda K, et al. Gut microbiota, determined by dietary nutrients, drive modification of the plasma lipid profile and insulin resistance[J]. iScience, 2021, 24: 102445. doi: 10.1016/j.isci.2021.102445. |
[10] | Toya T, Ozcan I, Corban MT, et al. Compositional change of gut microbiome and osteocalcin expressing endothelial progenitor cells in patients with coronary artery disease[J]. PLoS One, 2021, 16: e0249187. doi: 10.1371/journal.pone.0249187. |
[11] | Bao WH, Yang WL, Su CY, et al. Relationship between gut microbiota and vascular calcification in hemodialysis patients[J]. Ren Fail, 2023, 45: 2148538. doi: 10.1080/0886022X.2022.2148538. |
[12] | Okami Y, Arima H, Kondo K, et al. The gut microbiota and coronary artery calcification in Japanese men[J]. Am Heart J, 2024, 267: 12-21. |
[13] | Coskun M, Babayeva A, Barlas T, et al. Relationship between gut microbiome and bone deficits in primary hyperparathyroidism: a proof-of-concept pilot study[J]. J Investig Med, 2024, 72: 541-552. |
[14] | Chen C, Huang L, Chen Y, et al. Hydrolyzed egg yolk peptide prevented osteoporosis by regulating Wnt/β-catenin signaling pathway in ovariectomized rats[J]. Sci Rep, 2024, 14: 10227. doi: 10.1038/s41598-024-60514-8. |
[15] | Wei J, Li Z, Fan Y, et al. Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease: a potential role for extracellular vesicles[J]. Life Sci, 2023, 331: 122001. doi: 10.1016/j.lfs.2023.122001. |
[16] | Yazdekhasti N, Brandsch C, Schmidt N, et al. Fish protein increases circulating levels of trimethylamine-N-oxide and accelerates aortic lesion formation in apoE null mice[J]. Mol Nutr Food Res, 2016, 60: 358-368. |
[17] | Lan Z, Chen A, Li L, et al. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification[J]. J Pathol, 2022, 258: 213-226. |
[18] | Zhong H, Yu H, Chen J, et al. The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-κB signaling[J]. Vascul Pharmacol, 2022, 146: 107096. doi: 10.1016/j.vph.2022.107096. |
[19] | Manshouri S, Seif F, Kamali M, et al. The interaction of inflammasomes and gut microbiota: novel therapeutic insights[J]. Cell Commun Signal, 2024, 22: 209. doi: 10.1186/s12964-024-01504-1. |
[20] | Wei B, Deng N, Guo H, et al. Trimethylamine N-oxide promotes abdominal aortic aneurysm by inducing vascular inflammation and vascular smooth muscle cell phenotypic switching[J]. Eur J Pharmacol, 2024, 965: 176307. doi: 10.1016/j.ejphar.2023.176307. |
[21] | Zheng WC, Chan W, Dart A, et al. Novel therapeutic targets and emerging treatments for atherosclerotic cardiovascular disease[J]. Eur Heart J Cardiovasc Pharmacother, 2024, 10: 53-67. |
[22] | Zhao J, Cheng W, Lu H, et al. High fiber diet attenuate the inflammation and adverse remodeling of myocardial infarction via modulation of gut microbiota and metabolites[J]. Front Microbiol, 2022, 13: 1046912. doi: 10.3389/fmicb.2022.1046912. |
[23] | Schoeneck M, Iggman D. The effects of foods on LDL cholesterol levels: a systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials[J]. Nutr Metab Cardiovasc Dis, 2021, 31: 1325-1338. |
[24] | Cases A, Cigarrán-Guldrís S, Mas S, et al. Vegetable-based diets for chronic kidney disease? It is time to reconsider[J]. Nutrients, 2019, 11: 1263. doi: 10.3390/nu11061263. |
[25] | Singh V, Yeoh BS, Walker RE, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation[J]. Gut, 2019, 68:1801-1812. doi: 10.1136/gutjnl-2018-316250. |
[26] | Malik VS, Hu FB. Sugar-sweetened beverages and cardiometabolic health: an update of the evidence[J]. Nutrients, 2019, 11: 1840. doi: 10.3390/nu11081840. |
[27] | Frazier K, Kambal A, Zale EA, et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction[J]. Cell Host Microbe, 2022, 30: 809-823. |
[28] | Malesza IJ, Malesza M, Walkowiak J, et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review[J]. Cells, 2021, 10: 3164. doi: 10.3390/cells10113164. |
[29] | Tian Z, Wang X, Han T, et al. Inhibition of MAOB ameliorated high-fat-diet-induced atherosclerosis by inhibiting endothelial dysfunction and modulating gut micro-biota[J]. Nutrients, 2023, 15: 2542. doi: 10.3390/nu15112542. |
[30] | Zhu L, Zhang D, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe-/- mice[J]. Atherosclerosis, 2018, 268: 117-126. |
[31] | Barber TM, Kabisch S, Pfeiffer AF, et al. The effects of the Mediterranean diet on health and gut microbiota[J]. Nutrients, 2023, 15: 2150. doi: 10.3390/nu15092150. |
[32] | Piccirillo F, Carpenito M, Verolino G, et al. Changes of the coronary arteries and cardiac microvasculature with aging: implications for translational research and clinical practice[J]. Mech Ageing Dev, 2019, 184: 111161. doi: 10.1016/j.mad.2019.111161. |
[33] | Bouderlique E, Tang E, Zaworski J, et al. Vitamin D and calcium supplementation accelerate vascular calcification in a model of pseudoxanthoma elasticum[J]. Int J Mol Sci, 2022, 23: 2302. doi: 10.3390/ijms23042302. |
[34] | Cretoiu D, Ionescu RF, Enache RM, et al. Gut microbiome, functional food, atherosclerosis, and vascular calcifications-is there a missing link?[J]. Microorganisms, 2021, 9: 1913. doi: 10.3390/microorganisms9091913. |
[35] | Boughanem H, Ruiz-Limón P, Pilo J, et al. Linking serum vitamin D levels with gut microbiota after 1-year lifestyle intervention with Mediterranean diet in patients with obesity and metabolic syndrome: a nested cross-sectional and prospective study[J]. Gut Microbes, 2023, 15: 2249150. doi: 10.1080/19490976.2023.2249150. |
[36] | Lombardo M, Aulisa G, Marcon D, et al. The influence of animal-or plant-based diets on blood and urine trimethylamine-N-oxide (TMAO) levels in humans[J]. Curr Nutr Rep, 2022, 11: 56-68. |
[37] | Wang B, Kong Q, Li X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference[J]. Nutrients, 2020, 12: 3197. doi: 10.3390/nu12103197. |
[38] | Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease[J]. Circulation, 2020, 141: 1393-1403. |
[39] | Diao Z, Molludi J, Latef Fateh H, et al. Comparison of the low-calorie DASH diet and a low-calorie diet on serum TMAO concentrations and gut microbiota composition of adults with overweight/obesity: a randomized control trial[J]. Int J Food Sci Nutr, 2024, 75: 207-220. |
[40] | Baylie T, Ayelgn T, Tiruneh M, et al. Effect of ketogenic diet on obesity and other metabolic disorders: narrative review[J]. Diabetes Metab Syndr Obes, 2024, 17: 1391-1401. |
[41] | Nasser S, Vialichka V, Biesiekierska M, et al. Effects of ketogenic diet and ketone bodies on the cardiovascular system: concentration matters[J]. World J Diabetes, 2020, 11: 584-595. |
[42] | Shen X, Guo G, Feng G, et al. Effects of different carbohydrate content diet on gut microbiota and aortic calcification in diabetic mice[J]. Diabetes Metab Syndr Obes, 2024, 17: 2327-2346. |
[43] | Tani M, Tanaka S, Takamiya K, et al. Effects of repetitive diet-induced fluctuations in plasma phosphorus on vascular calcification and inflammation in rats with early-stage chronic kidney disease[J]. J Clin Biochem Nutr, 2020, 66: 139-145. |
[44] | De la Visitación N, Robles-Vera I, Toral M,et al. Protective effects of probiotic consumption in cardiovascular disease in systemic lupus erythematosus[J]. Nutrients, 2019,11:2676. doi: 10.3390/nu11112676. |
[45] | Rodrigues SD, Santos SS, Meireles T, et al. Uremic toxins promote accumulation of oxidized protein and increased sensitivity to hydrogen peroxide in endothelial cells by impairing the autophagic flux[J]. Biochem Biophys Res Commun, 2020, 523: 123-129. |
[1] | 侯楠, 刘源, 高俊, 王晶, 袁萌. 全血NPM1、MCP-1和肠道菌群与胃癌进展及预后相关[J]. 基础医学与临床, 2024, 44(8): 1137-1142. |
[2] | 岳玲玲, 王梓潓, 李小芹, 李利锋, 张万存, 于志丹. 肠道菌群代谢物次级胆汁酸调控宿主免疫功能[J]. 基础医学与临床, 2024, 44(6): 887-891. |
[3] | 何昀, 肖力, 曹娟, 刘志刚, 罗威耀. 奥美拉唑联合不同益生菌调节肠道菌群减轻小儿功能性消化不良[J]. 基础医学与临床, 2024, 44(2): 219-224. |
[4] | 范志娟, 武玉晶, 田亚琼, 刘爽, 张蝶, 刘树业. 高钙磷激活DNA损伤应答诱导人主动脉平滑肌细胞早衰[J]. 基础医学与临床, 2023, 43(8): 1234-1240. |
[5] | 吕彦函, 余卓颖, 李民. 肠道菌群在神经病理性疼痛中作用的研究进展[J]. 基础医学与临床, 2023, 43(1): 188-191. |
[6] | 熊浩, 袁芳. 慢性肾脏病血管钙化机制的研究进展[J]. 基础医学与临床, 2022, 42(7): 1124-1128. |
[7] | 王振花, 李潮生. 饮食作用的肠道菌群-免疫轴与高血压相关性的研究进展[J]. 基础医学与临床, 2022, 42(6): 983-987. |
[8] | 尹欢欢, 施潇潇, 陈丽萌. 肠-肾轴在新月体肾炎发病机制中的研究进展[J]. 基础医学与临床, 2022, 42(4): 656-660. |
[9] | 胡贤良, 万燕, 冯霁. 肠道菌群在妊娠期糖尿病发病中作用的研究进展[J]. 基础医学与临床, 2022, 42(3): 516-519. |
[10] | 郑杨, 魏海军, 申嘉陵, 刘润禹, 刘勇, 孙晓磊. MVBs及IL-1β在2型糖尿病大鼠血管钙化中的作用[J]. 基础医学与临床, 2022, 42(2): 208-214. |
[11] | 袁玲, 聂卫, 王蕾, 王宏, 崔晓雪, 刘琳娜. 慢性肾脏病血管钙化大鼠并发心肌炎性反应[J]. 基础医学与临床, 2021, 41(2): 197-202. |
[12] | 李春美, 赵微, 解相宏, 张伟虹, 杨佳卉, 李军, 刘晓军. 青稞酥油饮食对小鼠肠道菌群以及葡聚糖硫酸钠诱导的小鼠结肠炎症状的影响[J]. 基础医学与临床, 2021, 41(2): 203-208. |
[13] | 牛晓丹, 郭静波, 王惠琳, 迟俊婷, 阮海慧, 陶红霞, 王艳红. 肠道菌群与衰弱关系的研究进展[J]. 基础医学与临床, 2021, 41(1): 108-111. |
[14] | 邵瑞飞, 杨艳, 郑志榕, 赵世民, 陈国兵. 肠道菌群和“肠-肺”轴在脓毒症中的作用[J]. 基础医学与临床, 2020, 40(8): 1109-1112. |
[15] | 张静, 王肖枭, 周怡, 王雪, 顾开明, 叶迎春. 肠道菌群与疾病相关性的研究进展[J]. 基础医学与临床, 2020, 40(2): 243-247. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部