[1]Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2021,71:209-249. [2]Nireeksha N, Hegde MN, Shetty SS, et al. FOK l vitamin D receptor gene polymorphism and risk of dental caries: a case-control study[J]. Int J Dent, 2022,2022:6601566.doi: 10.1155/2022/6601566. [3]Alshabrawy AK, Cui Y, Sylvester C, et al. Therapeutic potential of a novel vitamin D(3) oxime analogue, VD1-6, with CYP24A1 enzyme inhibitory activity and negligible vitamin D receptor binding[J]. Biomolecules, 2022,12:960-974. [4]Annalora AJ, Jozic M, Marcus CB, et al. Alternative splicing of the vitamin D receptor modulates target gene expression and promotes ligand-independent functions[J].TAP, 2019,364:55-67. [5]Howles SA, Wiberg A, Goldsworthy M, et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease[J]. Nat Commun, 2019,10:5175-5185. [6]Penna-Martinez M, Ramos-Lopez E, Stern J, et al. Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma[J]. Thyroid, 2012,22:709-716. [7]Balla B, Tobiás B, Kósa JP, et al. Vitamin D-neutraliz-ing CYP24A1 expression, oncogenic mutation states and histological findings of human papillary thyroid cancer[J]. J Endocrinol Invest, 2015,38:313-321. [8]Clinckspoor I, Hauben E, Verlinden L, et al. Altered expression of key players in vitamin D metabolism and signaling in malignant and benign thyroid tumors[J]. J Histochem Cytochem, 2012,60:502-511. [9]Kim MJ, Kim D, Koo JS, et al. Vitamin D receptor expression and its clinical significance in papillary thyroid cancer[J]. Technol Cancer Res Treat, 2022,21:15330338221089933.doi: 10.1177/15330338221089933. [10]Ye Z, Xia X, Xu P, et al. The prognostic implication of the BRAF V600E mutation in papillary thyroid cancer in a Chinese population[J]. Int J Endocrinol, 2022,2022:6562149.doi: 10.1155/2022/6562149. [11]Boufraqech M, Patel D, Nilubol N, et al. Lysyl oxidase is a key player in BRAF/MAPK pathway-driven thyroid cancer aggressiveness[J]. Thyroid, 2019,29:79-92. [12]Zou M, Baitei EY, BinEssa HA, et al. Cyp24a1 attenuation limits progression of Braf(V600E)-induced papillary thyroid cancer cells and sensitizes them to BRAF(V600E) inhibitor PLX4720[J]. Cancer Res, 2017,77:2161-2172. [13]Li T, Zhao N, Lu J, et al. Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways[J]. Bioengineered, 2019,10:282-291. [14]闫雨生, 于跃利. p-mTOR、p-4EBP1及p-S6K1在甲状腺乳头状癌组织中的表达及临床意义[J]. 系统医学, 2020,5:16-19. [15]Chen B, Lei S, Yin X, et al. Mitochondrial respiration inhibition suppresses papillary thyroid carcinoma via PI3K/Akt/FoxO1/cyclin D1 pathway[J]. Front Oncol, 2022,12:900444.doi: 10.3389/fonc.2022.900444. [16]Nasser F, Moussa N, Helmy MW, et al. Dual targeting of Notch and Wnt/β-catenin pathways: potential approach in triple-negative breast cancer treatment[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021,394:481-490. [17]Wang DP, Tang XZ, Liang QK, et al. microRNA-599 promotes apoptosis and represses proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma cells via downregulation of Hey2-depentent Notch signal-ing pathway[J]. J Cell Physiol, 2020,235:2492-2505. [18]Lv J, Feng ZP, Chen FK, et al. M2-like tumor-associated macrophages-secreted Wnt1 and Wnt3a promotes dedifferentiation and metastasis via activating β-catenin pathway in thyroid cancer[J]. Mol Carcinog, 2021,60:25-37. [19]Hu N, Zhang H. CYP24A1 depletion facilitates the antitumor effect of vitamin D3 on thyroid cancer cells[J]. Exp Ther Med, 2018,16:2821-2830. [20]Gao Y, Xiang D, Li W, et al. BRAF(V600E) mutation-responsive miRNA-222-3p promotes metastasis of papillary thyroid cancer cells via snail-induced EMT[J]. Front Endocrinol (Lausanne), 2022,13:843334. doi: 10.3389/fendo.2022.843334. [21]Li Y, He J, Wang F, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer[J]. World J Surg Oncol, 2020,18:181-189. [22]Biyani M, Yasuda K, Isogai Y, et al. Novel DNA aptamer for CYP24A1 inhibition with enhanced antiproliferative activity in cancer cells[J]. ACS Appl Mater Interfaces, 2022,14:18064-18078. [23]Karlsson S, Diaz Cruz MA, Faresjö M, et al. Inhibition of CYP27B1 and CYP24 increases the anti-proliferative effects of 25-hydroxyvitamin D(3) in LNCaP cells[J]. Anticancer Res, 2021,41:4733-4740. [24]Paucarmayta A, Taitz H, Casablanca Y, et al. TGF-β signaling proteins and CYP24A1 may serve as surrogate markers for progesterone calcitriol treatment in ovarian and endometrial cancers of different histological types[J]. Transl Cancer Res, 2019,8:1423-1437. [25]Azer SM, Vaughan LE, Tebben PJ, et al. 24-Hydroxylase deficiency due to CYP24A1 sequence variants: compari-son with other vitamin D-mediated hypercalcemia disorders[J]. J Endocr Soc, 2021,5:bvab119. doi:10.1210/jendso/bvab119. |