[1] |
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation[J]. Nature, 2016, 539:180-186.
|
[2] |
Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153:1194-1217.
|
[3] |
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy[J]. Cell Stem Cell, 2021, 28:1708-1725.
|
[4] |
Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases[J]. Signal Transduct Target Ther, 2022, 7:92-110.
|
[5] |
Piffoux M, Volatron J, Cherukula K,et al. Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability[J]. Adv Drug Deliv Rev, 2021, 178:113972-113980.
|
[6] |
Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases[J]. Mayo Clin Proc, 2019, 94:892-905.
|
[7] |
Malekpour K, Hazrati A, Zahar M, et al. The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment[J]. Stem Cell Rev Rep, 2022, 18:933-951.
|
[8] |
Sun Y, Shi H, Yin S, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving beta-cell destruction[J]. ACS Nano, 2018, 12:7613-7628.
|
[9] |
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J of Mol Sci, 2020, 21:9759-9786.
|
[10] |
Jiang Y, Zhang P, Zhang X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Prolif, 2021, 54:12956-12975.
|
[11] |
Li H, Fan J, Fan L, et al. MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-beta/SMAD2 signaling pathway[J]. Aging Dis, 2018, 9:1058-1073.
|
[12] |
Fricova D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease[J]. NPJ Regen Med, 2020, 5:20-29.
|
[13] |
Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy[J]. Cell Death Dis, 2020, 11:288-304.
|
[14] |
Xue C, Li X, Ba L et al. MSCs-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of parkinson's disease[J]. Aging Dis, 2021, 12:1211-1222.
|
[15] |
Park KS, Bandeira E, Shelke GV, et al. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles[J]. Stem Cell Res Ther, 2019, 10:288-302.
|
[16] |
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity[J]. Diabetes, 2012, 61:1616-1625.
|
[17] |
Li H, Zhu H, Ge T, et al. Mesenchymal stem cell-based therapy for diabetes mellitus: enhancement strategies and future perspectives[J]. Stem Cell Rev Reports, 2021, 17:1552-1569.
|
[18] |
Zhang Y, Chen W, Feng B, et al. The clinical efficacy and safety of stem cell therapy for diabetes mellitus: a systematic review and meta-analysis[J]. Aging Dis, 2020, 11:141-153.
|
[19] |
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis[J]. Stem Cell Res Ther, 2020, 11:216-228.
|
[20] |
林颖, 胡豪畅, 成绩, 等. 间充质干细胞治疗动脉粥样硬化的研究进展[J]. 中华心血管病杂志, 2021, 49:288-292.doi: 10.3760/cma.j.cn112148-20210129-00106.
|
[21] |
Rahmani A, Saleki K, Javanmehr N, et al. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke[J]. Ageing Res Rev, 2020, 62:101106-101126.
|
[22] |
Takafuji Y, Hori M, Mizuno T, et al. Humoral factors secreted from adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in Ldlr-/- mice[J]. Cardiovasc Res, 2019, 115:1041-1051.
|
[23] |
Xiao X, Xu M, Yu H, et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src[J]. Signal Transduct Target Ther, 2021, 6:354-368.
|
[24] |
Ma J, Chen L, Zhu X, et al. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis[J]. Acta Biochim Biophys Sin(Shanghai), 2021, 53:1227-1236.
|
[25] |
Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage[J]. Biochem Biophys Res Commun, 2019, 510:565-572.
|
[26] |
Chen YT, Miao K, Zhou L, et al. Stem cell therapy for chronic obstructive pulmonary disease[J]. Chin Med J (Engl), 2021, 134:1535-1545.
|
[27] |
Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, et al. Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools[J]. Stem Cell Res Ther, 2022, 13:262-276.
|
[28] |
Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation[J]. Anal Cell Pathol (Amst), 2020, 2020:3153891-3153905.
|
[29] |
Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease[J]. Expert Rev Respir Med, 2020, 14:31-39.
|
[30] |
Squassoni SD, Sekiya EJ, Fiss E,et al. Autologous infusion of bone marrow and mesenchymal stromal cells in patients with chronic obstructive pulmonary disease: phase i randomized clinical trial[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:3561-3574.
|
[31] |
Yin W, Wang J, Jiang L, et al. Cancer and stem cells[J]. Exp Biol Med (Maywood), 2021, 246:1791-1801.
|
[32] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12:31-46.
|
[33] |
Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16:35-52.
|
[34] |
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer[J]. Semin Cancer Biol, 2020, 60:225-237.
|
[35] |
Lu L, Chen G, Yang J, et al. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway[J]. Biomed Pharmacother, 2019, 112-108625-108638.
|
[36] |
Hughes RM, Simons BW, Khan H,et al. Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression[J]. Cancer Res, 2019, 79:3636-3650.
|
[37] |
Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy[J]. J Hematol Oncol, 2021, 14:195-210.
|
[38] |
Li X, Sun Z, Peng G,et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast sub-group associated with poor clinical outcomes in patients with gastric cancer[J]. Theranostics, 2022, 12:620-638.
|
[39] |
Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics[J]. Expert Opin Drug Deliv, 2021, 18:1627-1642.
|
[40] |
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment[J]. Semin Immunol, 2018, 35:69-79.
|
[41] |
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics[J]. Nature, 2018, 557:335-342.
|
[42] |
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14:493-507.
|