[1] American Diabetes Association Professional Practice Committee. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45: S17-S38. [2] Krause MP, Riddell MC, Gordon CS, et al. Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models[J]. J Appl Physiol (1985), 2009, 106: 1650-1659. [3] Tan S, Gunendi Z, Meray J, et al. The evaluation of muscle strength and architecture in type 1 diabetes mellitus: a cross-sectional study[J]. BMC Endocr Disord, 2022, 22: 153. doi:10.1186/s12902-022-01062-y. [4] Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcope-nia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21: 300-307.e2. [5] 刘娟,丁清清,周白瑜,等.中国老年人肌少症诊疗专家共识(2021)[J].中华老年医学杂志, 2021,40:943-952. [6] Mori H, Kuroda A, Yoshida S, et al. High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: findings from the impact of diabetes mellitus on dynapenia study[J]. J Diabetes Investig, 2021, 12: 1050-1059. [7] Hiromine Y, Noso S, Rakugi H, et al. Poor glycemic control rather than types of diabetes is a risk factor for sarcopenia in diabetes mellitus: the muscles-dm study[J]. J Diabetes Investig, 2022, 13: 1881-1888. [8] Feng L, Gao Q, Hu K, et al. Prevalence and risk factors of sarcopenia in patients with diabetes: a meta-analysis[J]. J Clin Endocrinol Metab, 2022, 107: 1470-1483. [9] Massimino E, Izzo A, Riccardi G, et al. The impact of glucose-lowering drugs on sarcopenia in type 2 diabetes: current evidence and underlying mechanisms[J]. Cells, 2021, 10: 1958. doi:10.3390/cells10081958. [10] Khin PP, Hong Y, Yeon M, et al. Dulaglutide improves muscle function by attenuating inflammation through OPA-1-TLR-9 signaling in aged mice[J]. Aging, 2021, 13: 21962-21974. [11] Tanabe H, Hirai H, Saito H, et al. Detecting sarcopenia risk by diabetes clustering: a Japanese prospective cohort study[J]. J Clin Endocrinol Metab, 2022, 107: 2729-2736. [12] Hata S, Mori H, Yasuda T, et al. A low serum IGF-1 is correlated with sarcopenia in subjects with type 1 diabetes mellitus: findings from a post-hoc analysis of the iDIAMOND study[J]. Diabetes Res Clin Pract, 2021, 179: 108998. doi:10.1016/j.diabres.2021.108998. [13] Gutefeldt K, Hedman C A, Thyberg ISM, et al. Dysregulated growth hormone-insulin-like growth factor-1 axis in adult type 1 diabetes with long duration[J]. Clin Endocrinol (Oxf), 2018. doi:10.1111/cen.13810. [14] Ascenzi F, Barberi L, Dobrowolny G, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia[J]. Aging Cell, 2019, 18: e12954. doi:10.1111/acel.12954. [15] Scicchitano BM, Pelosi L, Sica G, et al. The physiopathologic role of oxidative stress in skeletal muscle[J]. Mech Ageing Dev, 2018, 170: 37-44. [16] Bluestone JA, Buckner JH, Herold KC. Immunotherapy: building a bridge to a cure for type 1 diabetes[J]. Science, 2021, 373: 510-516. doi:10.1126/science.abh1654. [17] Briet C, Bourdenet G, Rogner UC, et al. The spontane-ous autoimmune neuromyopathy in ICOSL-/- NOD mice is CD4+ T-cell and interferon-γ dependent[J]. Front Immunol, 2017, 8: 287. doi:10.3389/fimmu.2017.00287. [18] Blagov AV, Summerhill VI, Sukhorukov VN, et al. Type 1 diabetes mellitus: inflammation, mitophagy, and mitochondrial function[J]. Mitochondrion, 2023, 72: 11-21. [19] Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass[J]. Cell Mol Life Sci, 2021, 78: 1305-1328. [20] Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives[J]. Biomolecules, 2022, 12: 542. doi:10.3390/biom12040542. |