[1] Endo F, Kasai A, Soto JS, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease[J]. Science, 2022, 378: eadc9020.doi: 10.1126/science.adc9020. [2] Lee JH, Kim JY, Noh S, et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis[J]. Nature, 2021, 590: 612-617. [3] Lemus Silva EG, Delgadillo Y, White RE, et al. Beclin 1 regulates astrocyte phagocytosis and phagosomal recruit-ment of retromer[J]. Tissue Cell, 2023, 82: 102100.doi: 10.1016/j.tice.2023.102100. [4] Konstantinidis E, Dakhel A, Beretta C, et al. Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes[J]. Mol Cell Neurosci, 2023, 125: 103839.doi: 10.1016/j.mcn.2023.103839. [5] Mothes T, Portal B, Konstantinidis E, et al. Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology[J]. Acta Neuropathol Commun, 2023, 11: 97.doi: 10.1186/s40478-023-01589-8. [6] Shi D, Wong JKY, Zhu K, et al. The anaesthetics isoflurane and xenon reverse the synaptotoxic effects of Aβ(1-42) on Megf10-dependent astrocytic synapse elimination and spine density in ex vivo hippocampal brain slices[J]. Int J Mol Sci, 2023, 24.doi: 10.3390/ijms24020912. [7] Gao Y, Liu J, Wang J, et al. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer′s disease and the role of glial cells[J]. Brain Pathol, 2022, 32: e13047.doi: 10.1111/bpa.13047. [8] Zhang H, Chen W, Tan Z, et al. A role of low-density lipoprotein receptor-related protein 4 (LRP4) in astrocytic Aβ clearance[J]. J Neurosci, 2020, 40: 5347-5361. [9] Chen W, Huang Q, Lazdon EK, et al. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model[J]. Proc Natl Acad Sci U S A, 2023, 120: e2220684120.doi: 10.1073/pnas.2220684120. [10] Wang P, Ye Y. Filamentous recombinant human Tau activates primary astrocytes via an integrin receptor complex[J]. Nat Commun, 2021, 12: 95.doi: 10.1038/s41467-020-20322-w. [11] Lee E, Jung YJ, Park YR,et al. A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis[J]. Nat Aging, 2022, 2: 726-741. [12] Tzioras M, Daniels MJD, Davies C, et al. Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer′s disease via MFG-E8[J]. Cell Rep Med, 2023: 101175.doi: 10.1016/j.xcrm.2023.101175. [13] Habib N, Mccabe C, Medina S, et al. Disease-associated astrocytes in Alzheimer′s disease and aging[J]. Nat Neurosci, 2020, 23: 701-706. [14] Wang X, Zhu YT, Zhu Y, et al. Long-term running exercise alleviates cognitive dysfunction in APP/PSEN1 transgenic mice via enhancing brain lysosomal function[J]. Acta Pharmacol Sin, 2022, 43: 850-861. [15] Kim E, Kim H, Jedrychowski MP, et al. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling[J]. Neuron, 2023.doi: 10.1016/j.neuron.2023.08.012. [16] Zhou J, Singh N, Galske J,et al. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides[J]. Mol Neurodegener, 2023, 18: 31.doi: 10.1186/s13024-023-00611-w. [17] Mckee CA, Polino AJ, King MW, et al. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes[J]. Proc Natl Acad Sci USA, 2023, 120: e2220551120.doi: 10.1073/pnas.2220551120. [18] Ju YH, Bhalla M, Hyeon SJ, et al. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer′s disease[J]. Cell Metab, 2022, 34: 1104-1120.e8. [19] Zyśk M, Beretta C, Naia L, et al. Amyloid-β accumula-tion in human astrocytes induces mitochondrial disruption and changed energy metabolism[J]. J Neuroinflammation, 2023, 20: 43.doi: 10.1186/s12974-023-02722-z. [20] Söllvander S, Nikitidou E, Brolin R, et al. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons[J]. Mol Neurodegener, 2016, 11: 38.doi: 10.1186/s13024-016-0098-z. [21] Prakash P, Jethava KP, Korte N, et al. Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time[J]. Chem Sci, 2021, 12: 10901-10918. [22] Dejanovic B, Wu T, Tsai MC,et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer′s disease mouse models[J]. Nat Aging, 2022, 2: 837-850. [23] Yang S, Magnutzki A, Alami NO, et al. IKK2/NF-κB activation in astrocytes reduces amyloid β deposition: a process associated with specific microglia polarization[J]. Cells, 2021, 10.doi: 10.3390/cells10102669. [24] Wenzel TJ, Murray TE, Noyovitz B, et al. Cardiolipin released by microglia can act on neighboring glial cells to facilitate the uptake of amyloid-β (1-42)[J]. Mol Cell Neurosci, 2023, 124: 103804.doi: 10.1016/j.mcn.2022.103804. [25] Jung H, Lee SY, Lim S, et al. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein[J]. Nat Med, 2022, 28: 1802-1812. |