[1] Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327: 1379-1391. [2] Mocumbi A, Humbert M, Saxena A, et al. Pulmonary hypertension[J]. Nat Rev Dis Primers, 2024, 10: 1. doi:10.1038/s41572-023-00486-7. [3] D′Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry[J]. Ann Intern Med, 1991, 115: 343-349. [4] Peacock AJ, Murphy NF, Mcmrray JJV, et al. An epidemiological study of pulmonary arterial hypertension[J]. Eur Respir J, 2007, 30: 104-109. [5] Jing ZC, Xu XQ, Han ZY, et al. Registry and survival study in chinese patients with idiopathic and familial pulmonary arterial hypertension[J]. Chest, 2007, 132: 373-379. [6] Tuder RM, Davis LA, Graham BB. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension[J]. Am J Respir Crit Care Med, 2012, 185: 260-266. [7] Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect[J]. Eur J Clin Invest, 2013, 43: 855-865. [8] Sutendra G, Michelakis ED. The metabolic basis of pulmonary arterial hypertension[J]. Cell Metab, 2014, 19: 558-573. [9] Pokharel MD, Marciano DP, Fu P, et al. Metabolic reprogramming, oxidative stress, and pulmonary hypertension[J]. Redox Biol, 2023, 64: 102797. doi:10.1016/j.redox.2023.102797. [10] Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA, 1971, 68: 2374-2376. [11] Bujak R, García A, Rupérez FJ, et al. Metabolomics reveals metabolite changes in acute pulmonary embolism[J]. J Proteome Res, 2014, 13: 805-816. [12] Lewis GD, Ngo D, Henmes AR, et al. Metabolic profiling of right ventricular-pulmonary vascular function reveals circulating biomarkers of pulmonary hypertension[J]. J Am Coll Cardiol, 2016, 67: 174-189. [13] Bujak R, Mateo J, Blanco I, et al. New biochemical insights into the mechanisms of pulmonary arterial hypertension in humans[J]. PLoS One, 2016, 11: e0160505. doi:10.1371/journal.pone.0160505. [14] Rhodes CJ, Ghataorhe P, Wharton J, et al. Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension[J]. Circulation, 2017, 135: 460-475. [15] Fessel JP, Hamid R, Wittmann BM, et al. Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals wides-pread metabolic reprogramming[J]. Pulm Circ, 2012, 2: 201-213. [16] Zhao Y, Peng J, Lu C, et al. Metabolomic heterogeneity of pulmonary arterial hypertension[J]. PLoS One, 2014, 9: e88727. doi:10.1371/journal.pone.0088727. [17] Zhao YD, Chu L, Lin K, et al. A biochemical approach to understand the pathogenesis of advanced pulmonary arterial hypertension: metabolomic profiles of arginine, sphingosine-1-phosphate, and heme of human lung[J]. PLoS One, 2015, 10: e0134958. doi:10.1371/journal.pone.0134958. [18] Voelkel NF, Cool C, Lee SD, et al. Primary pulmonary hypertension between inflammation and cancer[J]. Chest, 1998, 114: 225S-230S. [19] Rai PR, Cool CD, King JAC, et al. The cancer paradigm of severe pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2008, 178: 558-564. [20] Koppenol WH, Bounds PL, Dang CV. Otto Warburg′s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11: 325-337. [21] Zhao L, Ashek A, Wang L, et al. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments[J]. Circulation, 2013, 128: 1214-1224. [22] Hernandez SD, Sanders L, Freeman S, et al. Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment[J]. Sci Rep, 2020, 10: 413. doi:10.1038/s41598-019-57200-5. [23] Cao Y, Zhang X, Wang L, et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension[J]. Proc Natl Acad Sci USA, 2019, 116: 13394-13403. [24] Wang L, Zhang X, Cao Y, et al. Mice with a specific deficiency of pfkfb3 in myeloid cells are protected from hypoxia-induced pulmonary hypertension[J]. Br J Pharmacol, 2021, 178: 1055-1072. [25] Mey JT, Hari A, Axelrod CL, et al. Lipids and ketones dominate metabolism at the expense of glucose control in pulmonary arterial hypertension: a hyperglycaemic clamp and metabolomics study[J]. Eur Respir J, 2020, 55: 1901700. doi:10.1183/13993003.01700-2019. [26] Legchenko E, Chouvarine P, Borchert P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation[J]. Sci Transl Med, 2018, 10: eaao0303. doi:10.1126/scitranslmed.aao0303. [27] Sutendra G, Bonnet S, Rochefort G, et al. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension[J]. Sci Transl Med, 2010, 2: 44ra58. doi:10.1126/scitranslmed.3001327. [28] Philip N, Pi H, Gadkari M, et al. Transpulmonary amino acid metabolism in the sugen hypoxia model of pulmonary hypertension[J]. Pulm Circ, 2023, 13: e12205. doi:10.1002/pul2.12205. [29] Michelakis ED, Gurtu V, Webster L, et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients[J]. Sci Transl Med, 2017, 9: eaao4583. doi:10.1126/scitranslmed.aao4583. [30] Alotaibi M, Shao J, Pauciulo MW, et al. Metabolomic profiles differentiate scleroderma-PAH from idiopathic PAH and correspond with worsened functional capacity[J]. Chest, 2023, 163: 204-215. [31] Simpson CE, Hemnes AR, Griffiths M, et al. Metabolo-mic differences in connective tissue disease-associated versus idiopathic pulmonary arterial hypertension in the PVDOMICS cohort[J]. Arthritis Rheumatol, 2023, 75: 2240-2251. [32] Swietlik EM, Ghataorhe P, Zalewska KI, et al. Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension[J]. Eur Respir J, 2021, 57: 2003201. doi:10.1183/13993003.03201-2020. [33] Brittain EL, Niswender K, Agrawal V, et al. Mechanistic phase II clinical trial of metformin in pulmonary arterial hypertension[J]. J Am Heart Assoc, 2020, 9: e018349. doi:10.1161/JAHA.120.018349. [34] Gao X, Zhang Z, Li X, et al. Macitentan attenuates chronic mountain sickness in rats by regulating arginine and purine metabolism[J]. J Proteome Res, 2020, 19: 3302-3314. [35] He YY, Yan Y, Chen JW, et al. Plasma metabolomics in the perioperative period of defect repair in patients with pulmonary arterial hypertension associated with congenital heart disease[J]. Acta Pharmacol Sin, 2022, 43: 1710-1720. [36] He YY, Yan Y, Jiang X, et al. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension[J]. Eur Respir J, 2020, 56: 2000522. doi:10.1183/13993003.00522-2020. [37] Luo Y, Qi X, Zhang Z, et al. Inactivation of malic enzyme 1 in endothelial cells alleviates pulmonary hypertension[J]. Circulation, 2024, 149:1354-1371. [38] Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2022, 43: 3618-3731. [39] Harbaum L, Rhodes CJ, Otero NEZP, et al. The application of ‘omics’ to pulmonary arterial hypertension[J]. Br J Pharmacol, 2021, 178: 108-120. [40] Guo TT, Deng YR, Huang X, et al. Untargeted metabolomics reveal the metabolic profile of normal pulmonary circulation[J]. Respir Med, 2023, 217: 107369. doi:10.1016/j.rmed.2023.107369. |