[1] |
Duan JY, Duan GC, Wang CJ, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in a central Chinese urban population: a cross-sectional survey[J]. BMC Nephrol,2020,21:115. doi: 10.1186/s12882-020-01761-5.
|
[2] |
Tang G, Li S, Zhang C, et al. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management[J]. Acta Pharm Sin B,2021,11:2749-2767. doi: 10.1016/j.apsb.2020.12.020.
|
[3] |
Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications[J]. Diabetologia,2021,64:709-716. doi: 10.1007/s00125-021-05380-z.
|
[4] |
Yamazaki T, Mimura I, Tanaka T, et al. Treatment of diabetic kidney disease: current and future[J]. Diabetes Metab J,2021,45:11-26. doi: 10.4093/dmj.2020.0217.
|
[5] |
Feng X, Wang S, Sun Z, et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice[J]. Front Endocrinol,2021,12. doi: 10.3389/fendo.2021.626390.
|
[6] |
Mei S, Li L, Zhou X, et al. Susceptibility of renal fibrosis in diabetes: role of hypoxia inducible factor-1[J]. FASEB J,2022,36:e22477. doi: 10.1096/fj.202200845R.
|
[7] |
Cai A, Chatziantoniou C, Calmont A. Vascular permeability: regulation pathways and role in kidney dseases[J]. Nephron,2021,145:297-310. doi: 10.1159/000514314.
|
[8] |
Lin CJ, Lan YM, Ou MQ, et al. Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats[J]. J Endocrinol Invest,2019,42:1307-1317. doi: 10.1007/s40618-019-01053-2.
|
[9] |
Ando A, Hashimoto N, Sakamoto K, et al. Repressive role of stabilized hypoxia inducible factor 1α expression on transforming growth factor β-induced extracellular matrix production in lung cancer cells[J]. Cancer Sci,2019,110:1959-1973. doi: 10.1111/cas.14027.
|
[10] |
Dou L, Jourde-Chiche N. Endothelial toxicity of high glucose and its by-products in diabetic kidney disease[J]. Toxins (Basel),2019,11. doi: 10.3390/toxins11100578.
|
[11] |
Garcia-Pastor C, Benito-Martinez S, Moreno-Manzano V, et al. Mechanism and consequences of the impaired Hif-1alpha response to hypoxia in human proximal tubular HK-2 cells exposed to high glucose[J]. Sci Rep,2019,9:15868. doi: 10.1038/s41598-019-52310-6.
|
[12] |
Dunn LL, Kong SMY, Tumanov S, et al. Hmox1(heme oxygenase-1) protects against ischemia-mediated injury via stabilization of HIF-1alpha (hypoxia-inducible factor-1alpha)[J]. Arterioscler Thromb Vasc Biol,2021,41:317-330. doi: 10.1161/ATVBAHA.120.315393.
|
[13] |
Chaudhary K, Chilakala A, Ananth S, et al. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload[J]. Am J Physiol Renal Physiol,2019,317:F512-f517. doi: 10.1152/ajprenal.00184.2019.
|
[14] |
Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy[J]. Eur J Pharmacol,2020,888:173574. doi: 10.1016/j.ejphar.2020.173574.
|
[15] |
Jiang N, Zhao H, Han Y, et al. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J]. Cell Prolif,2020,53. doi: 10.1111/cpr.12909.
|
[16] |
Zhang X, Feng J, Li X, et al. Mitophagy in diabetic kidney disease[J]. Front Cell Dev Biol,2021,9:778011. doi: 10.3389/fcell.2021.778011.
|
[17] |
Chen K, Dai H, Yuan J, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy[J]. Cell Death Dis,2018,9:105. doi: 10.1038/s41419-017-0127-z.
|
[18] |
张刘杰, 李静, 吴博. HIF-1介导的自噬在心脏疾病中的研究进展[J]. 基础医学与临床,2021,41:1186-1189. doi: 10.3969/j.issn.1001-6325.2021.08.019.
|
[19] |
Li W, Xiang Z, Xing Y, et al. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury[J]. Cell Death Dis,2022,13:308. doi: 10.1038/s41419-022-04770-4.
|
[20] |
Li C, Zhou J, Liu Z, et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1α-PINK1-Parkin pathway[J]. Faseb j,2020,34:3631-3645. doi: 10.1096/fj.201901808RRR.
|
[21] |
Zheng Y, Huang C, Lu L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol,2021,14:16. doi: 10.1186/s13045-020-01029-3.
|
[22] |
Madhu V, Boneski PK, Silagi E, et al. Hypoxic regula-tion of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1alpha-BNIP3 axis[J]. J Bone Miner Res,2020,35:1504-1524. doi: 10.1002/jbmr.4019.
|
[23] |
Fu ZJ, Wang ZY, Xu L, et al. HIF-1alpha-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury [J]. Redox Biol,2020,36:101671. doi: 10.1016/j.redox.2020.101671.
|
[24] |
Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia[J]. Redox Biol,2021,45:102047. doi: 10.1016/j.redox.2021.102047.
|
[25] |
Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease[J]. Nat Rev Nephrol,2020,16:206-222. doi: 10.1038/s41581-019-0234-4.
|
[26] |
Levin A, Reznichenko A, Witasp A, et al. Novel insights into the disease transcriptome of human diabetic glomeruli and tubulointerstitium[J]. Nephrol Dial Transplant,2020,35:2059-2072. doi: 10.1093/ndt/gfaa121.
|
[27] |
Sur S, Nguyen M, Boada P, et al. FcER1: a novel molecule implicated in the progression of human diabetic kidney disease[J]. Front Immunol,2021,12:769972. doi: 10.3389/fimmu.2021.769972.
|
[28] |
Liu C, Yang M, Li L, et al. A glimpse of inflammation and anti-inflammation therapy in diabetic kidney disease[J]. Front Physiol,2022,13:909569. doi: 10.3389/fphys.2022.909569.
|
[29] |
Li ZL, Lv LL, Wang B, et al. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway[J]. FASEB J,2019,33:12630-12643. doi: 10.1096/fj.201901087RR.
|