[1] |
Long W, Wang YB, Qu PF, et al. Functional analysis of HADH c.99C>G shows that the variant causes the proliferation of pancreatic islets and leu-sensitive hyperinsulinaemia[J]. J Genet, 2022, 101:44-51. doi:10.1007/s12041-022-01381-y.
|
[2] |
Ringel AE, Drijvers JM, Baker GJ, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity[J]. Cell, 2020, 183: 1848-1866. doi:10.1016/j.cell.2020.11.009.
|
[3] |
Alrob OA, Sankaralingam S, Ma C, et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling[J]. Cardiovasc Res, 2014, 103: 485-497. doi:10.1093/cvr/cvu156.
|
[4] |
Yang M, Liu K, Chen P, et al. Bromodomain-containing protein 4 as an epigenetic regulator of fatty acid metabo-lism genes and ferroptosis[J]. Cell Death Dis, 2022, 13: 912-920. doi:10.1038/s41419-022-05344-0.
|
[5] |
Vajravelu ME, Chai J, Krock B, et al. Congenital hyperinsulinism and hypopituitarism attributable to a mutation in FOXA2[J]. J Clin Endocrinol Metab, 2018, 103:1042-1047. doi:10.1210/jc.2017-02157.
|
[6] |
Wilkins OM, Titus AJ, Gui J, et al. Genome-scale identification of microRNA-related SNPs associated with risk of head and neck squamous cell carcinoma[J]. Carcinogenesis, 2017, 38: 986-993. doi:10.1093/carcin/bgx056.
|
[7] |
Shen C, Song YH, Xie Y, et al. Downregulation of HADH promotes gastric cancer progression via Akt signal-ing pathway[J]. Oncotarget, 2017, 8: 76279-76289. doi:10.18632/oncotarget.19348.
|
[8] |
Jiang H, Chen H, Wan P, et al. Decreased expression of HADH is related to poor prognosis and immune infiltration in kidney renal clear cell carcinoma[J]. Genomics, 2021, 113: 3556-3564. doi:10.1016/j.ygeno.2021.08.008.
|
[9] |
Nwosu ZC, Battello N, Rothley M, et al. Correction to: liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. J Exp Clin Cancer Res. 2018,37:267-271. doi:10.1186/s13046-018-0939-4.
|
[10] |
Kim DH, Lee KE. Discovering breast cancer biomarkers candidates through mRNA expression analysis based on the cancer genome atlas database[J]. J Pers Med, 2022, 12:1753-1762. doi:10.3390/jpm12101753.
|
[11] |
Zhang W, Liu B, Wu S, et al. TMT-based comprehensive proteomic profiling identifies serum prognostic signatures of acute myeloid leukemia[J]. Open Med, 2023, 18: 20220602. doi:10.1515/med-2022-0602.
|
[12] |
Voloshannko O, Schwartz U, Kranz D, et al. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells[J]. Sci Rep, 2018, 8: 3178-3185. doi:10.1038/s41598-018-20641-5.
|
[13] |
Wang R, Li J, Zhou X, et al. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors[J]. Genome Med, 2022, 14: 93-101. doi:10.1186/s13073-022-01093-z
|
[14] |
胡晓, 郭然, 张旭光. PPARα缺失加重乙醇诱导的小鼠胃黏膜慢性损伤[J]. 基础医学与临床,2023,43:1505-1511. doi: 10.16352/j.issn.1001-6325.2023.10.1505.
|
[15] |
Zhou X, Fang D, Liu H, et al. PMN-MDSCs accumula-tion induced by CXCL1 promotes CD8 T cells exhaustion in gastric cancer[J]. Cancer Lett, 2022, 532: 215598. doi:10.1016/j.canlet.2022.215598.
|
[16] |
Bakshi HA, Quimn GA, Nasef MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-alpha/NF-kB/VEGF pathways [J]. Cells, 2022, 11:1502-1513. doi:10.3390/cells11091502.
|
[17] |
Leibinger M, Zeitler C, Gobrecht P, et al. Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice[J]. Nat Commun, 2021, 12: 391-395. doi:10.1038/s41467-020-20112-4.
|
[18] |
Ham IH, Wang L, Lee D, et al. Curcumin inhibits the cancer-associated fibroblast-derived chemoresistance of gastric cancer through the suppression of the JAK/STAT3 signaling pathway[J]. Int J Oncol, 2022, 61:85-93. doi:10.3892/ijo.2022.5375.
|
[19] |
牛世伟, 苏韫, 龚红霞, 等. 胃癌患者血清IL-1的升高和癌组织JAK2/STAT3信号通路的激活[J]. 基础医学与临床, 2022,42:401-405. doi: 10.16352/j.issn.1001-6325.2022.03.035.
|
[20] |
Shiraiwa K, Matsuse M, Nakazawa Y, et al. JAK/STAT3 and NF-kappaB signaling pathways regulate cancer stem-cell properties in anaplastic thyroid cancer cells[J]. Thyroid, 2019, 29: 674-682. doi:10.1089/thy.2018.0212.
|
[21] |
Dunn S, Eberlein C, Yu J, et al. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be over-come by combining with Mcl-1 inhibitors[J]. Oncogene, 2022, 41: 5046-5060.doi:10.1038/s41388-022-02482-9.
|
[22] |
Abdullah ML, Al-shabanah O, Hassan Z K, et al. Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3a pathway inhibition[J]. Int J Mol Sci, 2021, 22:9243-9250. doi:10.3390/ijms22179243.
|
[23] |
Sun Y, Zhu L, Liu P, et al. ZDHHC2-mediated AGK palmitoylation activates AKT-mTOR signaling to reduce sunitinib sensitivity in renal cell carcinoma[J]. Cancer Res, 2023, 83: 2034-2051. doi:10.1158/0008-5472.CAN-22-3105.
|
[24] |
Biswas PK, Kwak Y, Kim A, et al. TTYH3 modulates bladder cancer proliferation and metastasis via FGFR1/H-Ras/A-Raf/MEK/ERK pathway[J]. Int J Mol Sci, 2022, 23:10496-10507 doi:10.3390/ijms231810496.
|
[25] |
Chen T, Zhang F, Liu J, et al. Dual role of WNT5A in promoting endothelial differentiation of glioma stem cells and angiogenesis of glioma derived endothelial cells[J]. Oncogene, 2021, 40: 5081-5094. doi:10.1038/s41388-021-01922-2.
|